openquake.calculators package#
Subpackages#
- openquake.calculators.export package
- Submodules
- openquake.calculators.export.hazard module
DisaggMatrix
HazardCurve
HazardMap
Location
UHS
add_imt()
add_quotes()
export_asce()
export_avg_gmf_csv()
export_cond_spectra()
export_disagg_csv()
export_event_based_mfd()
export_events()
export_fullreport()
export_gmf_data_csv()
export_gmf_data_hdf5()
export_hazard_npz()
export_hcurves_by_imt_csv()
export_hcurves_csv()
export_hcurves_xml()
export_hmaps_csv()
export_hmaps_xml()
export_mag_dst_eps_sig()
export_mean_disagg_by_src()
export_mean_rates_by_src()
export_realizations()
export_relevant_gmfs()
export_rtgm()
export_ruptures_csv()
export_uhs_xml()
get_kkf()
get_metadata()
hazard_curve_name()
iproduct()
- openquake.calculators.export.risk module
Location
Output
export_agg_risk_csv()
export_aggcurves_csv()
export_aggregate_by_csv()
export_aggrisk()
export_aggrisk_stats()
export_asset_risk_csv()
export_avg_losses()
export_bcr_map()
export_damages_csv()
export_event_loss_table()
export_loss_curves()
export_loss_maps_csv()
export_loss_maps_npz()
export_node_el()
export_reinsurance()
export_src_loss_table()
get_aggtags()
get_loss_maps()
get_paths()
get_rup_data()
indices()
modal_damage_array()
tag2idx()
- Module contents
base module#
- class openquake.calculators.base.BaseCalculator(oqparam, calc_id)[source]#
Bases:
object
Abstract base class for all calculators.
- Parameters:
oqparam – OqParam object
monitor – monitor object
calc_id – numeric calculation ID
- accept_precalc = []#
- check_precalc(precalc_mode)[source]#
Defensive programming against users providing an incorrect pre-calculation ID (with
--hazard-calculation-id
).- Parameters:
precalc_mode – calculation_mode of the previous calculation
- abstract execute()[source]#
Execution phase. Usually will run in parallel the core function and return a dictionary with the results.
- export(exports=None)[source]#
Export all the outputs in the datastore in the given export formats. Individual outputs are not exported if there are multiple realizations.
- from_engine = False#
- is_stochastic = False#
- abstract post_execute(result)[source]#
Post-processing phase of the aggregated output. It must be overridden with the export code. It will return a dictionary of output files.
- precalc = None#
- run(pre_execute=True, concurrent_tasks=None, remove=True, shutdown=False, **kw)[source]#
Run the calculation and return the exported outputs.
- Parameters:
pre_execute – set it to False to avoid running pre_execute
concurrent_tasks – set it to 0 to disable parallelization
remove – set it to False to remove the hdf5cache file (if any)
shutdown – set it to True to shutdown the ProcessPool
- class openquake.calculators.base.HazardCalculator(oqparam, calc_id)[source]#
Bases:
BaseCalculator
Base class for hazard calculators based on source models
- property E#
- Returns:
the number of stored events
- property N#
- Returns:
the number of sites
- property R#
- Returns:
the number of realizations
- af = None#
- amplifier = None#
- property few_sites#
- Returns:
True if there are less than max_sites_disagg
- load_crmodel()[source]#
Read the risk models and set the attribute .crmodel. The crmodel can be empty for hazard calculations. Save the loss ratios (if any) in the datastore.
- pre_execute()[source]#
Check if there is a previous calculation ID. If yes, read the inputs by retrieving the previous calculation; if not, read the inputs directly.
- read_exposure(haz_sitecol)[source]#
Read the exposure, the risk models and update the attributes .sitecol, .assetcol
- exception openquake.calculators.base.InvalidCalculationID[source]#
Bases:
Exception
Raised when running a post-calculation on top of an incompatible pre-calculation
- class openquake.calculators.base.RiskCalculator(oqparam, calc_id)[source]#
Bases:
HazardCalculator
Base class for all risk calculators. A risk calculator must set the attributes .crmodel, .sitecol, .assetcol, .riskinputs in the pre_execute phase.
- openquake.calculators.base.build_weights(realizations)[source]#
- Returns:
an array with the realization weights of shape R
- openquake.calculators.base.check_amplification(ampl_df, sitecol)[source]#
Make sure the amplification codes in the site collection match the ones in the amplification table.
- Parameters:
ampl_df – the amplification table as a pandas DataFrame
sitecol – the site collection
- openquake.calculators.base.check_imtls(this, parent)[source]#
Fix the hazard_imtls of two calculations if possible
- openquake.calculators.base.check_time_event(oqparam, occupancy_periods)[source]#
Check the time_event parameter in the datastore, by comparing with the periods found in the exposure.
- openquake.calculators.base.consistent(dic1, dic2)[source]#
Check if two dictionaries with default are consistent:
>>> consistent({'PGA': 0.05, 'SA(0.3)': 0.05}, {'default': 0.05}) True >>> consistent({'SA(0.3)': 0.1, 'SA(0.6)': 0.05}, ... {'default': 0.1, 'SA(0.3)': 0.1, 'SA(0.6)': 0.05}) True
- openquake.calculators.base.create_gmf_data(dstore, prim_imts, sec_imts=(), data=None)[source]#
Create and possibly populate the datasets in the gmf_data group
- openquake.calculators.base.create_risk_by_event(calc)[source]#
Created an empty risk_by_event with keys event_id, agg_id, loss_id and fields for damages, losses and consequences
- openquake.calculators.base.import_gmfs_csv(dstore, oqparam, sitecol)[source]#
Import in the datastore a ground motion field CSV file.
- Parameters:
dstore – the datastore
oqparam – an OqParam instance
sitecol – the site collection
- Returns:
event_ids
- openquake.calculators.base.import_gmfs_hdf5(dstore, oqparam)[source]#
Import in the datastore a ground motion field HDF5 file.
- Parameters:
dstore – the datastore
oqparam – an OqParam instance
- Returns:
event_ids
- openquake.calculators.base.read_parent_sitecol(oq, dstore)[source]#
- Returns:
the hazard site collection in the parent calculation
- openquake.calculators.base.read_shakemap(calc, haz_sitecol, assetcol)[source]#
Enabled only if there is a shakemap_id parameter in the job.ini. Download, unzip, parse USGS shakemap files and build a corresponding set of GMFs which are then filtered with the hazard site collection and stored in the datastore.
- openquake.calculators.base.run_calc(job_ini, **kw)[source]#
Helper to run calculations programmatically.
- Parameters:
job_ini – path to a job.ini file or dictionary of parameters
kw – parameters to override
- Returns:
a Calculator instance
- openquake.calculators.base.save_agg_values(dstore, assetcol, lossnames, aggby, maxagg)[source]#
Store agg_keys, agg_values. :returns: the aggkey dictionary key -> tags
- openquake.calculators.base.set_array(longarray, shortarray)[source]#
- Parameters:
longarray – a numpy array of floats of length L >= l
shortarray – a numpy array of floats of length l
Fill longarray with the values of shortarray, starting from the left. If shortarry is shorter than longarray, then the remaining elements on the right are filled with numpy.nan values.
getters module#
- class openquake.calculators.getters.HcurvesGetter(dstore)[source]#
Bases:
object
Read the contribution to the hazard curves coming from each source in a calculation with a source specific logic tree
- get_hcurve(src_id, imt=None, site_id=0, gsim_idx=None)[source]#
Return the curve associated to the given src_id, imt and gsim_idx as an array of length L
- class openquake.calculators.getters.PmapGetter(dstore, full_lt, slices, imtls=(), poes=(), use_rates=0)[source]#
Bases:
object
Read hazard curves from the datastore for all realizations or for a specific realization.
- Parameters:
dstore – a DataStore instance or file system path to it
sids – the subset of sites to consider (if None, all sites)
- property L#
- property M#
- property N#
- property R#
- get_hazard(gsim=None)[source]#
- Parameters:
gsim – ignored
- Returns:
a probability curve of shape (L, R) for the given site
- get_hcurve(sid)[source]#
- Parameters:
sid – a site ID
- Returns:
a ProbabilityCurve of shape L, R for the given site ID
- get_mean()[source]#
Compute the mean curve as a ProbabilityMap
- Parameters:
grp – if not None must be a string of the form “grp-XX”; in that case returns the mean considering only the contribution for group XX
- property imts#
- property sids#
- class openquake.calculators.getters.RuptureGetter(proxies, filename, trt_smr, trt, rlzs_by_gsim)[source]#
Bases:
object
- Parameters:
proxies – a list of RuptureProxies
filename – path to the HDF5 file containing a ‘rupgeoms’ dataset
trt_smr – source group index
trt – tectonic region type string
rlzs_by_gsim – dictionary gsim -> rlzs for the group
- property num_ruptures#
- property seeds#
- openquake.calculators.getters.build_stat_curve(hcurve, imtls, stat, weights, use_rates=False)[source]#
Build statistics by taking into account IMT-dependent weights
- openquake.calculators.getters.get_ebrupture(dstore, rup_id)[source]#
This is EXTREMELY inefficient, so it must be used only when you are interested in a single rupture.
- openquake.calculators.getters.get_rupture_getters(dstore, ct=0, srcfilter=None, rupids=None)[source]#
- Parameters:
dstore – a
openquake.commonlib.datastore.DataStore
ct – number of concurrent tasks
- Returns:
a list of RuptureGetters
classical module#
- class openquake.calculators.classical.ClassicalCalculator(oqparam, calc_id)[source]#
Bases:
HazardCalculator
Classical PSHA calculator
- SLOW_TASK_ERROR = False#
- accept_precalc = ['preclassical', 'classical']#
- agg_dicts(acc, dic)[source]#
Aggregate dictionaries of hazard curves by updating the accumulator.
- Parameters:
acc – accumulator dictionary
dic – dict with keys pmap, source_data, rup_data
- check_mean_rates(mean_rates_by_src)[source]#
The sum of the mean_rates_by_src must correspond to the mean_rates
- check_memory(N, L, maxw)[source]#
Log the memory required to receive the largest ProbabilityMap, assuming all sites are affected (upper limit)
- collect_hazard(acc, pmap_by_kind)[source]#
Populate hcurves and hmaps in the .hazard dictionary
- Parameters:
acc – ignored
pmap_by_kind – a dictionary of ProbabilityMaps
- core_task(sitecol, cmaker, dstore, monitor)#
Call the classical calculator in hazardlib
- execute()[source]#
Run in parallel core_task(sources, sitecol, monitor), by parallelizing on the sources according to their weight and tectonic region type.
- precalc = 'preclassical'#
- class openquake.calculators.classical.Hazard(dstore, srcidx, gids)[source]#
Bases:
object
Helper class for storing the rates
- openquake.calculators.classical.build_slice_by_sid(sids, offset=0)[source]#
Convert an array of site IDs (with repetitions) into an array slice_dt
- openquake.calculators.classical.classical(sources, sitecol, cmaker, dstore, monitor)[source]#
Call the classical calculator in hazardlib
- openquake.calculators.classical.get_pmaps_gb(dstore)[source]#
- Returns:
memory required on the master node to keep the pmaps
- openquake.calculators.classical.make_hmap_png(hmap, lons, lats)[source]#
- Parameters:
hmap – a dictionary with keys calc_id, m, p, imt, poe, inv_time, array
lons – an array of longitudes
lats – an array of latitudes
- Returns:
an Image object containing the hazard map
- openquake.calculators.classical.postclassical(pgetter, N, hstats, individual_rlzs, max_sites_disagg, amplifier, monitor)[source]#
- Parameters:
pgetter – an
openquake.commonlib.getters.PmapGetter
N – the total number of sites
hstats – a list of pairs (statname, statfunc)
individual_rlzs – if True, also build the individual curves
max_sites_disagg – if there are less sites than this, store rup info
amplifier – instance of Amplifier or None
monitor – instance of Monitor
- Returns:
a dictionary kind -> ProbabilityMap
The “kind” is a string of the form ‘rlz-XXX’ or ‘mean’ of ‘quantile-XXX’ used to specify the kind of output.
classical_bcr module#
- class openquake.calculators.classical_bcr.ClassicalBCRCalculator(oqparam, calc_id)[source]#
Bases:
ClassicalRiskCalculator
Classical BCR Risk calculator
- accept_precalc = ['classical']#
- core_task(param, monitor)#
Compute and return the average losses for each asset.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsparam – dictionary of extra parameters
monitor –
openquake.baselib.performance.Monitor
instance
- openquake.calculators.classical_bcr.classical_bcr(riskinputs, param, monitor)[source]#
Compute and return the average losses for each asset.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsparam – dictionary of extra parameters
monitor –
openquake.baselib.performance.Monitor
instance
classical_damage module#
- class openquake.calculators.classical_damage.ClassicalDamageCalculator(oqparam, calc_id)[source]#
Bases:
ClassicalRiskCalculator
Scenario damage calculator
- accept_precalc = ['classical']#
- core_task(param, monitor)#
Core function for a classical damage computation.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsparam – dictionary of extra parameters
monitor –
openquake.baselib.performance.Monitor
instance
- Yields:
dictionaries asset_ordinal -> damage(R, L, D)
- openquake.calculators.classical_damage.classical_damage(riskinputs, param, monitor)[source]#
Core function for a classical damage computation.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsparam – dictionary of extra parameters
monitor –
openquake.baselib.performance.Monitor
instance
- Yields:
dictionaries asset_ordinal -> damage(R, L, D)
classical_risk module#
- class openquake.calculators.classical_risk.ClassicalRiskCalculator(oqparam, calc_id)[source]#
Bases:
RiskCalculator
Classical Risk calculator
- accept_precalc = ['classical']#
- core_task(oqparam, monitor)#
Compute and return the average losses for each asset.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsoqparam – input parameters
monitor –
openquake.baselib.performance.Monitor
instance
- post_execute(result)[source]#
Saving loss curves in the datastore.
- Parameters:
result – aggregated result of the task classical_risk
- precalc = 'classical'#
- openquake.calculators.classical_risk.classical_risk(riskinputs, oqparam, monitor)[source]#
Compute and return the average losses for each asset.
- Parameters:
riskinputs –
openquake.risklib.riskinput.RiskInput
objectsoqparam – input parameters
monitor –
openquake.baselib.performance.Monitor
instance
disaggregation module#
Disaggregation calculator core functionality
- class openquake.calculators.disaggregation.DisaggregationCalculator(oqparam, calc_id)[source]#
Bases:
HazardCalculator
Classical PSHA disaggregation calculator
- accept_precalc = ['classical', 'disaggregation']#
- agg_result(acc, results)[source]#
Collect the results coming from compute_disagg into self.results.
- Parameters:
acc – dictionary s, r -> array8D
result – dictionary with the result coming from a task
- get_curve(sid, rlzs)[source]#
Get the hazard curves for the given site ID and realizations.
- Parameters:
sid – site ID
rlzs – a matrix of indices of shape Z
- Returns:
a list of Z arrays of PoEs
- post_execute(results)[source]#
Save all the results of the disaggregation. NB: the number of results to save is #sites * #rlzs * #disagg_poes * #IMTs.
- Parameters:
results – a dictionary sid, rlz -> 8D disagg matrix
- pre_checks()[source]#
Checks on the number of sites, atomic groups and size of the disaggregation matrix.
- precalc = 'classical'#
- openquake.calculators.disaggregation.compute_disagg(dstore, ctxt, sitecol, cmaker, bin_edges, src_mutex, rwdic, monitor)[source]#
- Parameters:
dstore – a DataStore instance
ctxt – a context array
sitecol – a site collection
cmaker – a ContextMaker instance
bin_edges – a tuple of bin edges (mag, dist, lon, lat, eps, trt)
src_mutex – a dictionary src_id -> weight, usually empty
rwdic – dictionary rlz -> weight, empty for individual realizations
monitor – monitor of the currently running job
- Returns:
a list of dictionaries containing matrices of rates
event_based module#
- class openquake.calculators.event_based.EventBasedCalculator(oqparam, calc_id)[source]#
Bases:
HazardCalculator
Event based PSHA calculator generating the ground motion fields and the hazard curves from the ruptures, depending on the configuration parameters.
- accept_precalc = ['event_based', 'ebrisk', 'event_based_risk']#
- agg_dicts(acc, result)[source]#
- Parameters:
acc – accumulator dictionary
result – an AccumDict with events, ruptures and gmfs
- core_task(cmaker, stations, dstore, monitor)#
Compute GMFs and optionally hazard curves
- execute()[source]#
Execution phase. Usually will run in parallel the core function and return a dictionary with the results.
- is_stochastic = True#
- openquake.calculators.event_based.build_hcurves(calc)[source]#
Build the hazard curves from each realization starting from the stored GMFs. Works only for few sites.
- openquake.calculators.event_based.compute_avg_gmf(gmf_df, weights, min_iml)[source]#
- Parameters:
gmf_df – a DataFrame with colums eid, sid, rlz, gmv…
weights – E weights associated to the realizations
min_iml – array of M minimum intensities
- Returns:
a dictionary site_id -> array of shape (2, M)
- openquake.calculators.event_based.count_ruptures(src)[source]#
Count the number of ruptures on a heavy source
- openquake.calculators.event_based.event_based(proxies, cmaker, stations, dstore, monitor)[source]#
Compute GMFs and optionally hazard curves
- openquake.calculators.event_based.filter_stations(station_df, complete, rup, maxdist)[source]#
- Parameters:
station_df – DataFrame with the stations
complete – complete SiteCollection
rup – rupture
maxdist – maximum distance
- Returns:
filtered (station_df, station_sitecol)
- openquake.calculators.event_based.gen_event_based(allproxies, cmaker, stations, dstore, monitor)[source]#
Launcher of event_based tasks
event_based_risk module#
- class openquake.calculators.event_based_risk.EventBasedRiskCalculator(oqparam, calc_id)[source]#
Bases:
EventBasedCalculator
Event based risk calculator generating event loss tables
- accept_precalc = ['scenario', 'event_based', 'event_based_risk', 'ebrisk']#
- agg_dicts(dummy, dic)[source]#
- Parameters:
dummy – unused parameter
dic – dictionary with keys “avg”, “alt”
- core_task(cmaker, stations, dstore, monitor)#
- Parameters:
proxies – list of RuptureProxies with the same trt_smr
cmaker – ContextMaker instance associated to the trt_smr
stations – empty pair or (station_data, station_sitecol)
monitor – a Monitor instance
- Returns:
a dictionary of arrays
- is_stochastic = True#
- post_execute(dummy)[source]#
Compute and store average losses from the risk_by_event dataset, and then loss curves and maps.
- pre_execute()[source]#
Check if there is a previous calculation ID. If yes, read the inputs by retrieving the previous calculation; if not, read the inputs directly.
- precalc = 'event_based'#
- openquake.calculators.event_based_risk.aggreg(outputs, crmodel, ARK, aggids, rlz_id, ideduc, monitor)[source]#
- Returns:
(avg_losses, agg_loss_table)
- openquake.calculators.event_based_risk.average_losses(ln, alt, rlz_id, AR, collect_rlzs)[source]#
- Returns:
a sparse coo matrix with the losses per asset and realization
- openquake.calculators.event_based_risk.debugprint(ln, asset_loss_table, adf)[source]#
Print risk_by_event in a reasonable format. To be used with –nd
- openquake.calculators.event_based_risk.ebr_from_gmfs(sbe, oqparam, dstore, monitor)[source]#
- Parameters:
slice_by_event – composite array with fields ‘start’, ‘stop’
oqparam – OqParam instance
dstore – DataStore instance from which to read the GMFs
monitor – a Monitor instance
- Yields:
dictionary of arrays, the output of event_based_risk
- openquake.calculators.event_based_risk.ebrisk(proxies, cmaker, stations, dstore, monitor)[source]#
- Parameters:
proxies – list of RuptureProxies with the same trt_smr
cmaker – ContextMaker instance associated to the trt_smr
stations – empty pair or (station_data, station_sitecol)
monitor – a Monitor instance
- Returns:
a dictionary of arrays
- openquake.calculators.event_based_risk.event_based_risk(df, oqparam, monitor)[source]#
- Parameters:
df – a DataFrame of GMFs with fields sid, eid, gmv_X, …
oqparam – parameters coming from the job.ini
monitor – a Monitor instance
- Returns:
a dictionary of arrays
- openquake.calculators.event_based_risk.fast_agg(keys, values, correl, li, acc)[source]#
- Parameters:
keys – an array of N uint64 numbers encoding (event_id, agg_id)
values – an array of (N, D) floats
correl – True if there is asset correlation
li – loss type index
acc – dictionary unique key -> array(L, D)
event_based_damage module#
- class openquake.calculators.event_based_damage.DamageCalculator(oqparam, calc_id)[source]#
Bases:
EventBasedRiskCalculator
Damage calculator
- accept_precalc = ['scenario', 'event_based', 'event_based_risk', 'event_based_damage']#
- combine(acc, res)[source]#
- Parameters:
acc – unused
res – DataFrame with fields (event_id, agg_id, loss_id, dmg1 …) plus array with damages and consequences of shape (A, Dc)
Combine the results and grows risk_by_event with fields (event_id, agg_id, loss_id) and (dmg_0, dmg_1, dmg_2, …)
- core_task(oqparam, dstore, monitor)#
- Parameters:
df – a DataFrame of GMFs with fields sid, eid, gmv_X, …
oqparam – parameters coming from the job.ini
dstore – a DataStore instance
monitor – a Monitor instance
- Returns:
(damages (eid, kid) -> LDc plus damages (A, Dc))
- is_stochastic = True#
- precalc = 'event_based'#
- openquake.calculators.event_based_damage.damage_from_gmfs(gmfslices, oqparam, dstore, monitor)[source]#
- Parameters:
gmfslices – an array (S, 3) with S slices (start, stop, weight)
oqparam – OqParam instance
dstore – DataStore instance from which to read the GMFs
monitor – a Monitor instance
- Returns:
a dictionary of arrays, the output of event_based_damage
- openquake.calculators.event_based_damage.event_based_damage(df, oqparam, dstore, monitor)[source]#
- Parameters:
df – a DataFrame of GMFs with fields sid, eid, gmv_X, …
oqparam – parameters coming from the job.ini
dstore – a DataStore instance
monitor – a Monitor instance
- Returns:
(damages (eid, kid) -> LDc plus damages (A, Dc))
post_risk module#
- class openquake.calculators.post_risk.PostRiskCalculator(oqparam, calc_id)[source]#
Bases:
RiskCalculator
Compute losses and loss curves starting from an event loss table.
- openquake.calculators.post_risk.build_aggcurves(items, builder, aggregate_loss_curves_types)[source]#
- Parameters:
items – a list of pairs ((agg_id, rlz_id, loss_id), losses)
builder – a
LossCurvesMapsBuilder
instance
- openquake.calculators.post_risk.build_reinsurance(dstore, oq, num_events)[source]#
Build and store the tables reinsurance-avg_policy and reinsurance-avg_portfolio; for event_based, also build the reinsurance-aggcurves table.
- openquake.calculators.post_risk.build_store_agg(dstore, oq, rbe_df, num_events)[source]#
Build the aggrisk and aggcurves tables from the risk_by_event table
- openquake.calculators.post_risk.fix_dtypes(dic)[source]#
Fix the dtypes of the given columns inside a dictionary (to be called before conversion to a DataFrame)
- openquake.calculators.post_risk.fix_investigation_time(oq, dstore)[source]#
If starting from GMFs, fix oq.investigation_time. :returns: the number of hazard realizations
- openquake.calculators.post_risk.get_loss_builder(dstore, oq, return_periods=None, loss_dt=None, num_events=None)[source]#
- Parameters:
dstore – datastore for an event based risk calculation
- Returns:
a LossCurvesMapsBuilder instance
- openquake.calculators.post_risk.get_src_loss_table(dstore, loss_id)[source]#
- Returns:
(source_ids, array of losses of shape Ns)
- openquake.calculators.post_risk.post_aggregate(calc_id: int, aggregate_by)[source]#
Re-run the postprocessing after an event based risk calculation
- openquake.calculators.post_risk.reagg_idxs(num_tags, tagnames)[source]#
- Parameters:
num_tags – dictionary tagname -> number of tags with that tagname
tagnames – subset of tagnames of interest
- Returns:
T = T1 x … X TN indices with repetitions
Reaggregate indices. Consider for instance a case with 3 tagnames, taxonomy (4 tags), region (3 tags) and country (2 tags):
>>> num_tags = dict(taxonomy=4, region=3, country=2)
There are T = T1 x T2 x T3 = 4 x 3 x 2 = 24 combinations. The function will return 24 reaggregated indices with repetions depending on the selected subset of tagnames.
For instance reaggregating by taxonomy and region would give:
>>> list(reagg_idxs(num_tags, ['taxonomy', 'region'])) # 4x3 [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11]
Reaggregating by taxonomy and country would give:
>>> list(reagg_idxs(num_tags, ['taxonomy', 'country'])) # 4x2 [0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7]
Reaggregating by region and country would give:
>>> list(reagg_idxs(num_tags, ['region', 'country'])) # 3x2 [0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
Here is an example of single tag aggregation:
>>> list(reagg_idxs(num_tags, ['taxonomy'])) # 4 [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
reportwriter module#
Utilities to build a report writer generating a .rst report for a calculation
- class openquake.calculators.reportwriter.ReportWriter(dstore)[source]#
Bases:
object
A particularly smart view over the datastore
- title = {'avglosses_data_transfer': 'Estimated data transfer for the avglosses', 'biggest_ebr_gmf': 'Maximum memory allocated for the GMFs', 'exposure_info': 'Exposure model', 'inputs': 'Input files', 'job_info': 'Data transfer', 'params': 'Parameters', 'performance': 'Slowest operations', 'required_params_per_trt': 'Required parameters per tectonic region type', 'ruptures_events': 'Specific information for event based', 'slow_sources': 'Slowest sources', 'task:start_classical:-1': 'Slowest task', 'task:start_classical:0': 'Fastest task', 'task_info': 'Information about the tasks', 'weight_by_src': 'Computation times by source typology'}#
- openquake.calculators.reportwriter.build_report(job_ini, output_dir=None)[source]#
Write a report.csv file with information about the calculation without running it
- Parameters:
job_ini – full pathname of the job.ini file
output_dir – the directory where the report is written (default the input directory)
views module#
- class openquake.calculators.views.HtmlTable(header_plus_body, name='noname', empty_table='Empty table')[source]#
Bases:
object
Convert a sequence header+body into a HTML table.
- border = '1'#
- css = ' tr.evenRow { background-color: lightgreen }\n tr.oddRow { }\n th { background-color: lightblue }\n '#
- maxrows = 5000#
- summary = ''#
- class openquake.calculators.views.Source(source_id, code, num_ruptures, checksum)#
Bases:
tuple
- checksum#
Alias for field number 3
- code#
Alias for field number 1
- num_ruptures#
Alias for field number 2
- source_id#
Alias for field number 0
- openquake.calculators.views.avglosses_data_transfer(token, dstore)[source]#
Determine the amount of average losses transferred from the workers to the controller node in a risk calculation.
- openquake.calculators.views.binning_error(values, eids, nbins=10)[source]#
- Parameters:
values – E values
eids – E integer event indices
- Returns:
std/mean for the sums of the values
Group the values in nbins depending on the eids and returns the variability of the sums relative to the mean.
- openquake.calculators.views.dt(names)[source]#
- Parameters:
names – list or a string with space-separated names
- Returns:
a numpy structured dtype
- openquake.calculators.views.form(value)[source]#
Format numbers in a nice way.
>>> form(0) '0' >>> form(0.0) '0.0' >>> form(0.0001) '1.000E-04' >>> form(1003.4) '1_003' >>> form(103.41) '103.4' >>> form(9.3) '9.30000' >>> form(-1.2) '-1.2'
- openquake.calculators.views.portfolio_dmgdist(token, dstore)[source]#
The portfolio damages extracted from the first realization of damages-rlzs
- openquake.calculators.views.stats(name, array, *extras)[source]#
Returns statistics from an array of numbers.
- Parameters:
name – a descriptive string
- Returns:
(name, mean, rel_std, min, max, len) + extras
- openquake.calculators.views.sum_table(records)[source]#
Used to compute summaries. The records are assumed to have numeric fields, except the first field which is ignored, since it typically contains a label. Here is an example:
>>> sum_table([('a', 1), ('b', 2)]) ['total', 3]
- openquake.calculators.views.text_table(data, header=None, fmt=None, ext='rst')[source]#
Build a .rst (or .org) table from a matrix or a DataFrame
>>> tbl = [['a', 1], ['b', 2]] >>> print(text_table(tbl, header=['Name', 'Value'])) +------+-------+ | Name | Value | +------+-------+ | a | 1 | +------+-------+ | b | 2 | +------+-------+
- openquake.calculators.views.view_MPL(token, dstore)[source]#
Maximum Probable Loss at a given return period
- openquake.calculators.views.view_assets_by_site(token, dstore)[source]#
Display statistical information about the distribution of the assets
- openquake.calculators.views.view_bad_ruptures(token, dstore)[source]#
Display the ruptures degenerating to a point
- openquake.calculators.views.view_branches(token, dstore)[source]#
Show info about the branches in the logic tree
- openquake.calculators.views.view_branchsets(token, dstore)[source]#
Show the branchsets in the logic tree
- openquake.calculators.views.view_calc_risk(token, dstore)[source]#
Compute the risk_by_event table starting from GMFs
- openquake.calculators.views.view_collapsible(token, dstore)[source]#
Show how much the ruptures are collapsed for each site
- openquake.calculators.views.view_composite_source_model(token, dstore)[source]#
Show the structure of the CompositeSourceModel in terms of grp_id
- openquake.calculators.views.view_contents(token, dstore)[source]#
Returns the size of the contents of the datastore and its total size
- openquake.calculators.views.view_delta_loss(token, dstore)[source]#
Estimate the stocastic error on the loss curve by splitting the events in odd and even. Example:
$ oq show delta_loss # consider the first loss type
- openquake.calculators.views.view_disagg(token, dstore)[source]#
Example: $ oq show disagg:Mag Returns a table poe, imt, mag, contribution for the first site
- openquake.calculators.views.view_ebrups_by_mag(token, dstore)[source]#
Show how many event based ruptures there are for each magnitude
- openquake.calculators.views.view_event_based_mfd(token, dstore)[source]#
Compare n_occ/eff_time with occurrence_rate
- openquake.calculators.views.view_event_loss_table(token, dstore)[source]#
Display the top 20 losses of the event loss table for the first loss type
$ oq show event_loss_table
- openquake.calculators.views.view_event_rates(token, dstore)[source]#
Show the number of events per realization multiplied by risk_time/eff_time
- openquake.calculators.views.view_events_by_mag(token, dstore)[source]#
Show how many events there are for each magnitude
- openquake.calculators.views.view_exposure_by_country(token, dstore)[source]#
Returns a table with the number of assets per country. The countries are defined as in the file geoBoundariesCGAZ_ADM0.shp
- openquake.calculators.views.view_exposure_info(token, dstore)[source]#
Display info about the exposure model
- openquake.calculators.views.view_extreme(token, dstore)[source]#
Show sites where the mean hazard map reaches maximum values
- openquake.calculators.views.view_extreme_gmvs(token, dstore)[source]#
Display table of extreme GMVs with fields (eid, gmv_0, sid, rlz. rup)
- openquake.calculators.views.view_fullreport(token, dstore)[source]#
Display an .rst report about the computation
- openquake.calculators.views.view_global_gmfs(token, dstore)[source]#
Display GMFs on the first IMT averaged on everything for debugging purposes
- openquake.calculators.views.view_global_hazard(token, dstore)[source]#
Display the global hazard for the calculation. This is used for debugging purposes when comparing the results of two calculations.
- openquake.calculators.views.view_global_hmaps(token, dstore)[source]#
Display the global hazard maps for the calculation. They are used for debugging purposes when comparing the results of two calculations. They are the mean over the sites of the mean hazard maps.
- openquake.calculators.views.view_gmf(token, dstore)[source]#
Display a mean gmf for debugging purposes
- openquake.calculators.views.view_gmvs_to_hazard(token, dstore)[source]#
Show the number of GMFs over the highest IML
- openquake.calculators.views.view_gsim_for_event(token, dstore)[source]#
Display the GSIM used when computing the GMF for the given event:
$ oq show gsim_for_event:123 -1 [BooreAtkinson2008]
- openquake.calculators.views.view_job_info(token, dstore)[source]#
Determine the amount of data transferred from the controller node to the workers and back in a classical calculation.
- openquake.calculators.views.view_maximum_intensity(token, dstore)[source]#
Show intensities at minimum and maximum distance for the highest magnitude
- openquake.calculators.views.view_mean_disagg(token, dstore)[source]#
Display mean quantities for the disaggregation. Useful for checking differences between two calculations.
- openquake.calculators.views.view_mean_perils(token, dstore)[source]#
For instance oq show mean_perils
- openquake.calculators.views.view_mean_rates(token, dstore)[source]#
Display mean hazard rates for the first site
- openquake.calculators.views.view_num_units(token, dstore)[source]#
Display the number of units by taxonomy
- openquake.calculators.views.view_performance(token, dstore)[source]#
Display performance information
- openquake.calculators.views.view_portfolio_damage(token, dstore)[source]#
The mean full portfolio damage for each loss type, extracted from the average damages
- openquake.calculators.views.view_portfolio_loss(token, dstore)[source]#
The mean portfolio loss for each loss type, extracted from the event loss table.
- openquake.calculators.views.view_portfolio_losses(token, dstore)[source]#
The losses for the full portfolio, for each realization and loss type, extracted from the event loss table.
- openquake.calculators.views.view_relevant_sources(token, dstore)[source]#
Returns a table with the sources contributing more than 10% of the highest source.
- openquake.calculators.views.view_required_params_per_trt(token, dstore)[source]#
Display the parameters needed by each tectonic region type
- openquake.calculators.views.view_risk_by_event(token, dstore)[source]#
There are two possibilities:
$ oq show risk_by_event:<loss_type> $ oq show risk_by_event:<event_id>
In both cases displays the top 30 losses of the aggregate loss table as a TSV, for all events or only the given event.
- openquake.calculators.views.view_risk_by_rup(token, dstore)[source]#
Display the top 30 aggregate losses by rupture ID. Usage:
$ oq show risk_by_rup
- openquake.calculators.views.view_rlz(token, dstore)[source]#
Show info about a given realization in the logic tree Example:
$ oq show rlz:0 -1
- openquake.calculators.views.view_rup(token, dstore)[source]#
Show the ruptures (contexts) generated by a given source
- openquake.calculators.views.view_rup_info(token, dstore, maxrows=25)[source]#
Show the slowest ruptures
- openquake.calculators.views.view_rup_stats(token, dstore)[source]#
Show the statistics of event based ruptures
- openquake.calculators.views.view_slow_sources(token, dstore, maxrows=20)[source]#
Returns the slowest sources
- openquake.calculators.views.view_source_data(token, dstore)[source]#
Display info about a given task. Here is an example:
$ oq show source_data:42
- openquake.calculators.views.view_sources_branches(token, dstore)[source]#
Returns a table with the sources in the logic tree by branches
- openquake.calculators.views.view_sum(token, dstore)[source]#
Show the sum of an array of shape (A, R, L, …) on the first axis
- openquake.calculators.views.view_task_durations(token, dstore)[source]#
Display the raw task durations. Here is an example of usage:
$ oq show task_durations
- openquake.calculators.views.view_task_ebrisk(token, dstore)[source]#
Display info about ebrisk tasks:
$ oq show task_ebrisk:-1 # the slowest task
- openquake.calculators.views.view_task_hazard(token, dstore)[source]#
Display info about a given task. Here are a few examples of usage:
$ oq show task:classical:0 # the fastest task $ oq show task:classical:-1 # the slowest task
- openquake.calculators.views.view_task_info(token, dstore)[source]#
Display statistical information about the tasks performance. It is possible to get full information about a specific task with a command like this one, for a classical calculation:
$ oq show task_info:classical
- openquake.calculators.views.view_totlosses(token, dstore)[source]#
This is a debugging view. You can use it to check that the total losses, i.e. the losses obtained by summing the average losses on all assets are indeed equal to the aggregate losses. This is a sanity check for the correctness of the implementation.
extract module#
- class openquake.calculators.extract.Extract[source]#
Bases:
dict
A callable dictionary of functions with a single instance called extract. Then extract(dstore, fullkey) dispatches to the function determined by the first part of fullkey (a slash-separated string) by passing as argument the second part of fullkey.
For instance extract(dstore, ‘sitecol’).
- class openquake.calculators.extract.Extractor(calc_id)[source]#
Bases:
object
A class to extract data from a calculation.
- Parameters:
calc_id – a calculation ID
NB: instantiating the Extractor opens the datastore.
- class openquake.calculators.extract.RuptureData(trt, gsims, mags)[source]#
Bases:
object
Container for information about the ruptures of a given tectonic region type.
- exception openquake.calculators.extract.WebAPIError[source]#
Bases:
RuntimeError
Wrapper for an error on a WebAPI server
- class openquake.calculators.extract.WebExtractor(calc_id, server=None, username=None, password=None)[source]#
Bases:
Extractor
A class to extract data from the WebAPI.
- Parameters:
calc_id – a calculation ID
server – hostname of the webapi server (can be ‘’)
username – login username (can be ‘’)
password – login password (can be ‘’)
NB: instantiating the WebExtractor opens a session.
- openquake.calculators.extract.avglosses(dstore, loss_types, kind)[source]#
- Returns:
an array of average losses of shape (A, R, L)
- openquake.calculators.extract.build_csq_dt(dstore)[source]#
- Parameters:
dstore – a datastore instance
- Returns:
a composite dtype loss_type -> (csq1, csq2, …)
- openquake.calculators.extract.build_damage_array(data, damage_dt)[source]#
- Parameters:
data – an array of shape (A, L, D)
damage_dt – a damage composite data type loss_type -> states
- Returns:
a composite array of length N and dtype damage_dt
- openquake.calculators.extract.build_damage_dt(dstore)[source]#
- Parameters:
dstore – a datastore instance
- Returns:
a composite dtype loss_type -> (ds1, ds2, …)
- openquake.calculators.extract.clusterize(hmaps, rlzs, k)[source]#
- Parameters:
hmaps – array of shape (R, M, P)
rlzs – composite array of shape R
k – number of clusters to build
- Returns:
array of K elements with dtype (rlzs, branch_paths, centroid)
- openquake.calculators.extract.crm_attrs(dstore, what)[source]#
- Returns:
the attributes of the risk model, i.e. limit_states, loss_types, min_iml and covs, needed by the risk exporters.
- openquake.calculators.extract.extract_(dstore, dspath)[source]#
Extracts an HDF5 path object from the datastore, for instance extract(dstore, ‘sitecol’).
- openquake.calculators.extract.extract_agg_curves(dstore, what)[source]#
Aggregate loss curves from the ebrisk calculator:
/extract/agg_curves?kind=stats&absolute=1&loss_type=occupants&occupancy=RES
Returns an array of shape (#periods, #stats) or (#periods, #rlzs)
- openquake.calculators.extract.extract_agg_damages(dstore, what)[source]#
Aggregate damages of the given loss type and tags. Use it as /extract/agg_damages/structural?taxonomy=RC&custom_site_id=20126
- Returns:
array of shape (R, D), being R the number of realizations and D the number of damage states, or an array of length 0 if there is no data for the given tags
- openquake.calculators.extract.extract_agg_losses(dstore, what)[source]#
Aggregate losses of the given loss type and tags. Use it as /extract/agg_losses/structural?taxonomy=RC&custom_site_id=20126 /extract/agg_losses/structural?taxonomy=RC&custom_site_id=*
- Returns:
an array of shape (T, R) if one of the tag names has a * value an array of shape (R,), being R the number of realizations an array of length 0 if there is no data for the given tags
- openquake.calculators.extract.extract_aggregate(dstore, what)[source]#
/extract/aggregate/avg_losses? kind=mean&loss_type=structural&tag=taxonomy&tag=occupancy
- openquake.calculators.extract.extract_asset_risk(dstore, what)[source]#
Extract an array of assets + risk fields, optionally filtered by tag. Use it as /extract/asset_risk?taxonomy=RC&taxonomy=MSBC&occupancy=RES
- openquake.calculators.extract.extract_asset_tags(dstore, tagname)[source]#
Extract an array of asset tags for the given tagname. Use it as /extract/asset_tags or /extract/asset_tags/taxonomy
- openquake.calculators.extract.extract_assets(dstore, what)[source]#
Extract an array of assets, optionally filtered by tag. Use it as /extract/assets?taxonomy=RC&taxonomy=MSBC&occupancy=RES
- openquake.calculators.extract.extract_csq_curves(dstore, what)[source]#
Aggregate damages curves from the event_based_damage calculator:
/extract/csq_curves?agg_id=0&loss_type=occupants
Returns an ArrayWrapper of shape (P, D1) with attribute return_periods
- openquake.calculators.extract.extract_disagg(dstore, what)[source]#
Extract a disaggregation output as an ArrayWrapper. Example: http://127.0.0.1:8800/v1/calc/30/extract/ disagg?kind=Mag_Dist&imt=PGA&site_id=1&poe_id=0&spec=stats
- openquake.calculators.extract.extract_disagg_layer(dstore, what)[source]#
Extract a disaggregation layer containing all sites and outputs Example: http://127.0.0.1:8800/v1/calc/30/extract/disagg_layer?
- openquake.calculators.extract.extract_effect(dstore, what)[source]#
Extracts the effect of ruptures. Use it as /extract/effect
- openquake.calculators.extract.extract_eids_by_gsim(dstore, what)[source]#
Returns a dictionary gsim -> event_ids for the first TRT Example: http://127.0.0.1:8800/v1/calc/30/extract/eids_by_gsim
- openquake.calculators.extract.extract_exposure_metadata(dstore, what)[source]#
Extract the loss categories and the tags of the exposure. Use it as /extract/exposure_metadata
- openquake.calculators.extract.extract_gridded_sources(dstore, what)[source]#
Extract information about the gridded sources (requires ps_grid_spacing) Use it as /extract/gridded_sources?task_no=0. Returns a json string id -> lonlats
- openquake.calculators.extract.extract_gsims_by_trt(dstore, what)[source]#
Extract the dictionary gsims_by_trt
- openquake.calculators.extract.extract_hcurves(dstore, what)[source]#
Extracts hazard curves. Use it as /extract/hcurves?kind=mean&imt=PGA or /extract/hcurves?kind=rlz-0&imt=SA(1.0)
- openquake.calculators.extract.extract_hmaps(dstore, what)[source]#
Extracts hazard maps. Use it as /extract/hmaps?imt=PGA
- openquake.calculators.extract.extract_mean_by_rup(dstore, what)[source]#
Extract src_id, rup_id, mean from the stored contexts Example: http://127.0.0.1:8800/v1/calc/30/extract/mean_by_rup
- openquake.calculators.extract.extract_mean_rates_by_src(dstore, what)[source]#
Extract the mean_rates_by_src information. Example: http://127.0.0.1:8800/v1/calc/30/extract/mean_rates_by_src?site_id=0&imt=PGA&iml=.001
- openquake.calculators.extract.extract_med_gmv(dstore, what)[source]#
Extract med_gmv array for the given source
- openquake.calculators.extract.extract_mfd(dstore, what)[source]#
Compare n_occ/eff_time with occurrence_rate. Example: http://127.0.0.1:8800/v1/calc/30/extract/event_based_mfd?
- openquake.calculators.extract.extract_num_events(dstore, what)[source]#
- Returns:
the number of events (if any)
- openquake.calculators.extract.extract_oqparam(dstore, dummy)[source]#
Extract job parameters as a JSON npz. Use it as /extract/oqparam
- openquake.calculators.extract.extract_realizations(dstore, dummy)[source]#
Extract an array of realizations. Use it as /extract/realizations
- openquake.calculators.extract.extract_relevant_events(dstore, dummy=None)[source]#
Extract the relevant events Example: http://127.0.0.1:8800/v1/calc/30/extract/events
- openquake.calculators.extract.extract_risk_stats(dstore, what)[source]#
Compute the risk statistics from a DataFrame with individual realizations Example: http://127.0.0.1:8800/v1/calc/30/extract/risk_stats/aggrisk
- openquake.calculators.extract.extract_rup_ids(dstore, what)[source]#
Extract src_id, rup_id from the stored contexts Example: http://127.0.0.1:8800/v1/calc/30/extract/rup_ids
- openquake.calculators.extract.extract_rups_by_mag_dist(dstore, what)[source]#
Extracts the number of ruptures by mag, dist. Use it as /extract/rups_by_mag_dist
- openquake.calculators.extract.extract_rupture_info(dstore, what)[source]#
Extract some information about the ruptures, including the boundary. Example: http://127.0.0.1:8800/v1/calc/30/extract/rupture_info?min_mag=6
- openquake.calculators.extract.extract_ruptures(dstore, what)[source]#
Extract the ruptures with their geometry as a big CSV string Example: http://127.0.0.1:8800/v1/calc/30/extract/ruptures?rup_id=6
- openquake.calculators.extract.extract_sitecol(dstore, what)[source]#
Extracts the site collection array (not the complete object, otherwise it would need to be pickled). Use it as /extract/sitecol?field=vs30
- openquake.calculators.extract.extract_source_data(dstore, what)[source]#
Extract performance information about the sources. Use it as /extract/source_data?
- openquake.calculators.extract.extract_sources(dstore, what)[source]#
Extract information about a source model. Use it as /extract/sources?limit=10 or /extract/sources?source_id=1&source_id=2 or /extract/sources?code=A&code=B
- openquake.calculators.extract.extract_task_info(dstore, what)[source]#
Extracts the task distribution. Use it as /extract/task_info?kind=classical
- openquake.calculators.extract.extract_uhs(dstore, what)[source]#
Extracts uniform hazard spectra. Use it as /extract/uhs?kind=mean or /extract/uhs?kind=rlz-0, etc
- openquake.calculators.extract.extract_weights(dstore, what)[source]#
Extract the realization weights
- openquake.calculators.extract.get_info(dstore)[source]#
- Returns:
a dict with ‘stats’, ‘loss_types’, ‘num_rlzs’, ‘tagnames’, etc
- openquake.calculators.extract.get_relevant_event_ids(dstore, threshold)[source]#
- Parameters:
dstore – a DataStore instance with a risk_by_rupture dataframe
threshold – fraction of the total losses
- Returns:
array with the event IDs cumulating the highest losses up to the threshold (usually 95% of the total loss)
- openquake.calculators.extract.get_relevant_rup_ids(dstore, threshold)[source]#
- Parameters:
dstore – a DataStore instance with a risk_by_rupture dataframe
threshold – fraction of the total losses
- Returns:
array with the rupture IDs cumulating the highest losses up to the threshold (usually 95% of the total loss)
- openquake.calculators.extract.get_ruptures_within(dstore, bbox)[source]#
Extract the ruptures within the given bounding box, a string minlon,minlat,maxlon,maxlat. Example: http://127.0.0.1:8800/v1/calc/30/extract/ruptures_with/8,44,10,46
- openquake.calculators.extract.get_sites(sitecol, complete=True)[source]#
- Returns:
a lon-lat or lon-lat-depth array depending if the site collection is at sea level or not; if there is a custom_site_id, prepend it
- openquake.calculators.extract.hazard_items(dic, sites, *extras, **kw)[source]#
- Parameters:
dic – dictionary of arrays of the same shape
sites – a sites array with lon, lat fields of the same length
extras – optional triples (field, dtype, values)
kw – dictionary of parameters (like investigation_time)
- Returns:
a list of pairs (key, value) suitable for storage in .npz format
- openquake.calculators.extract.lit_eval(string)[source]#
ast.literal_eval the string if possible, otherwise returns it unchanged
- openquake.calculators.extract.parse(query_string, info={})[source]#
- Returns:
a normalized query_dict as in the following examples:
>>> parse('kind=stats', {'stats': {'mean': 0, 'max': 1}}) {'kind': ['mean', 'max'], 'k': [0, 1], 'rlzs': False} >>> parse('kind=rlzs', {'stats': {}, 'num_rlzs': 3}) {'kind': ['rlz-000', 'rlz-001', 'rlz-002'], 'k': [0, 1, 2], 'rlzs': True} >>> parse('kind=mean', {'stats': {'mean': 0, 'max': 1}}) {'kind': ['mean'], 'k': [0], 'rlzs': False} >>> parse('kind=rlz-3&imt=PGA&site_id=0', {'stats': {}}) {'kind': ['rlz-3'], 'imt': ['PGA'], 'site_id': [0], 'k': [3], 'rlzs': True}