openquake.hmtk.seismicity.occurrence package#
Submodules#
openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood module#
- class openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood.AkiMaxLikelihood[source]#
- Bases: - SeismicityOccurrence- calculate(catalogue, config=None, completeness=None)[source]#
- Calculation of b-value and its uncertainty for a given catalogue, using the maximum likelihood method of Aki (1965), with a correction for discrete bin width (Bender, 1983). - Parameters:
- catalogue – See - openquake.hmtk.seismicity.occurrence.base.pyfor further explanation
- config – The configuration in this case do not contains specific information 
- completeness (float) – Completeness magnitude 
 
- Return float bval:
- b-value of the Gutenberg-Richter relationship 
- Return float sigma_b:
- Standard deviation of the GR b-value 
 
 
openquake.hmtk.seismicity.occurrence.b_maximum_likelihood module#
- class openquake.hmtk.seismicity.occurrence.b_maximum_likelihood.BMaxLikelihood[source]#
- Bases: - SeismicityOccurrence- Implements maximum likelihood calculations taking into account time variation in completeness” - calculate(catalogue, config, completeness=None)[source]#
- Calculates recurrence parameters a_value and b_value, and their respective uncertainties - Parameters:
- catalogue – Earthquake Catalogue An instance of - openquake.hmtk.seismicity.catalogue
- config (dict) – A configuration dictionary; the only parameter that can be defined in this case if the type of average to be applied in the calculation 
- completeness (list or numpy.ndarray) – Completeness table 
 
 
 
openquake.hmtk.seismicity.occurrence.base module#
- class openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence[source]#
- Bases: - object- Implements recurrence calculations for instrumental seismicity - abstract calculate(catalogue, config, completeness=None)[source]#
- Implements recurrence calculation - Parameters:
- catalogue – An instance of - openquake.hmtk.seismicity.catalogue
- config (dict) – The config contains the necessary information to run a specific algorithm. 
- completeness (numpy.ndarray) – The completeness matrix 
 
 
 
openquake.hmtk.seismicity.occurrence.kijko_smit module#
- class openquake.hmtk.seismicity.occurrence.kijko_smit.KijkoSmit[source]#
- Bases: - SeismicityOccurrence- Class to Implement the Kijko & Smit (2012) algorithm for estimation of a- and b-value 
openquake.hmtk.seismicity.occurrence.penalized_mle module#
- class openquake.hmtk.seismicity.occurrence.penalized_mle.PenalizedMLE[source]#
- Bases: - SeismicityOccurrence- Test Implementation of the Penalized Maximum Likelihood function - IERR = {1: 'No events in catalogue - returning prior', 2: 'Failure of convergence - returning prior'}#
 - calculate(catalogue, config, completeness)[source]#
- Calculates the b-value and rates (and their corresponding standard deviations) using the Penalized MLE approach - Parameters:
- config (dict) – Configuration parameters 
- catalogue – Earthquake catalogue as instance of :class: openquake.hmtk.seismicity.catalogue.Catalogue 
- completeness – Completeness table 
 
- Returns:
- b-value, standard deviation on b, rate (or a-value), standard deviation on a 
 
 
openquake.hmtk.seismicity.occurrence.utils module#
- openquake.hmtk.seismicity.occurrence.utils.generate_synthetic_magnitudes(aval, bval, mmin, mmax, nyears)[source]#
- Generates a synthetic catalogue for a specified number of years, with magnitudes distributed according to a truncated Gutenberg-Richter distribution - Parameters:
- aval (float) – a-value 
- bval (float) – b-value 
- mmin (float) – Minimum Magnitude 
- mmax (float) – Maximum Magnitude 
- nyears (int) – Number of years 
 
- Returns:
- Synthetic catalogue (dict) with year and magnitude attributes 
 
- openquake.hmtk.seismicity.occurrence.utils.generate_trunc_gr_magnitudes(bval, mmin, mmax, nsamples)[source]#
- Generate a random list of magnitudes distributed according to a truncated Gutenberg-Richter model - Parameters:
- bval (float) – b-value 
- mmin (float) – Minimum Magnitude 
- mmax (float) – Maximum Magnitude 
- nsamples (int) – Number of samples 
 
- Returns:
- Vector of generated magnitudes 
 
- openquake.hmtk.seismicity.occurrence.utils.get_completeness_counts(catalogue, completeness, d_m)[source]#
- Returns the number of earthquakes in a set of magnitude bins of specified with, along with the corresponding completeness duration (in years) of the bin - Parameters:
- catalogue – Earthquake catalogue as instance of :class: openquake.hmtk.seisimicity.catalogue.Catalogue 
- completeness (numpy.ndarray) – Completeness table [year, magnitude] 
- d_m (float) – Bin size 
 
- Returns:
- cent_mag - array indicating center of magnitude bins 
- t_per - array indicating total duration (in years) of completeness 
- n_obs - number of events in completeness period 
 
 
- openquake.hmtk.seismicity.occurrence.utils.input_checks(catalogue, config, completeness)[source]#
- Performs a basic set of input checks on the data 
- openquake.hmtk.seismicity.occurrence.utils.recurrence_table(mag, dmag, year, time_interval=None)[source]#
- Table of recurrence statistics for each magnitude [Magnitude, Number of Observations, Cumulative Number of Observations >= M, Number of Observations (normalised to annual value), Cumulative Number of Observations (normalised to annual value)] Counts number and cumulative number of occurrences of each magnitude in catalogue - Parameters:
- mag (numpy.ndarray) – Catalog matrix magnitude column 
- dmag (numpy.ndarray) – Magnitude interval 
- year (numpy.ndarray) – Catalog matrix year column 
 
- Returns numpy.ndarray recurrence table:
- Recurrence table 
 
openquake.hmtk.seismicity.occurrence.weichert module#
- class openquake.hmtk.seismicity.occurrence.weichert.Weichert[source]#
- Bases: - SeismicityOccurrence- Class to Implement Weichert Algorithm - weichert_algorithm(tper, fmag, nobs, mrate=0.0, bval=1.0, itstab=1e-05, maxiter=1000)[source]#
- Weichert algorithm - Parameters:
- tper (numpy.ndarray (float)) – length of observation period corresponding to magnitude 
- fmag (numpy.ndarray (float)) – central magnitude 
- nobs (numpy.ndarray (int)) – number of events in magnitude increment 
- mrate (float) – reference magnitude 
- bval – initial value for b-value 
- itstab (float) – stabilisation tolerance 
- maxiter (Int) – Maximum number of iterations 
 
- Returns:
- b-value, sigma_b, a-value, sigma_a 
- Return type:
- float 
 
 
