# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2018-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import operator
import numpy
from openquake.baselib import general, hdf5
from openquake.hazardlib import probability_map, stats
from openquake.hazardlib.calc.disagg import to_rates, to_probs
from openquake.hazardlib.source.rupture import (
BaseRupture, RuptureProxy, get_ebr)
from openquake.commonlib import datastore
U16 = numpy.uint16
U32 = numpy.uint32
I64 = numpy.int64
F32 = numpy.float32
TWO24 = 2 ** 24
by_taxonomy = operator.attrgetter('taxonomy')
code2cls = BaseRupture.init()
weight = operator.itemgetter('n_occ')
[docs]class NotFound(Exception):
pass
[docs]def build_stat_curve(hcurve, imtls, stat, weights, use_rates=False):
"""
Build statistics by taking into account IMT-dependent weights
"""
poes = hcurve.array.T # shape R, L
assert len(poes) == len(weights), (len(poes), len(weights))
L = imtls.size
array = numpy.zeros((L, 1))
if isinstance(weights, list): # IMT-dependent weights
# this is slower since the arrays are shorter
for imt in imtls:
slc = imtls(imt)
ws = [w[imt] for w in weights]
if sum(ws) == 0: # expect no data for this IMT
continue
if use_rates:
array[slc, 0] = to_probs(stat(to_rates(poes[:, slc]), ws))
else:
array[slc, 0] = stat(poes[:, slc], ws)
else:
if use_rates:
array[:, 0] = to_probs(stat(to_rates(poes), weights))
else:
array[:, 0] = stat(poes, weights)
return probability_map.ProbabilityCurve(array)
[docs]def sig_eps_dt(imts):
"""
:returns: a composite data type for the sig_eps output
"""
lst = [('eid', U32), ('rlz_id', U16)]
for imt in imts:
lst.append(('sig_inter_' + imt, F32))
for imt in imts:
lst.append(('eps_inter_' + imt, F32))
return numpy.dtype(lst)
[docs]class HcurvesGetter(object):
"""
Read the contribution to the hazard curves coming from each source
in a calculation with a source specific logic tree
"""
def __init__(self, dstore):
self.dstore = dstore
self.imtls = dstore['oqparam'].imtls
self.full_lt = dstore['full_lt'].init()
self.sslt = self.full_lt.source_model_lt.decompose()
self.source_info = dstore['source_info'][:]
[docs] def get_hcurve(self, src_id, imt=None, site_id=0, gsim_idx=None):
"""
Return the curve associated to the given src_id, imt and gsim_idx
as an array of length L
"""
assert ';' in src_id, src_id # must be a realization specific src_id
imt_slc = self.imtls(imt) if imt else slice(None)
start, gsims, weights = self.bysrc[src_id]
dset = self.dstore['_rates']
if gsim_idx is None:
curves = dset[start:start + len(gsims), site_id, imt_slc]
return weights @ curves
return to_probs(dset[start + gsim_idx, site_id, imt_slc])
# NB: not used right now
[docs] def get_hcurves(self, src, imt=None, site_id=0, gsim_idx=None):
"""
Return the curves associated to the given src, imt and gsim_idx
as an array of shape (R, L)
"""
assert ';' not in src, src # not a rlz specific source ID
curves = []
for i in range(self.sslt[src].num_paths):
src_id = '%s;%d' % (src, i)
curves.append(self.get_hcurve(src_id, imt, site_id, gsim_idx))
return numpy.array(curves)
[docs] def get_mean_hcurve(self, src=None, imt=None, site_id=0, gsim_idx=None):
"""
Return the mean curve associated to the given src, imt and gsim_idx
as an array of shape L
"""
if src is None:
hcurves = [self.get_mean_hcurve(src) for src in self.sslt]
return general.agg_probs(*hcurves)
weights = [rlz.weight for rlz in self.sslt[src]]
curves = self.get_hcurves(src, imt, site_id, gsim_idx)
return weights @ curves
[docs]class PmapGetter(object):
"""
Read hazard curves from the datastore for all realizations or for a
specific realization.
:param dstore: a DataStore instance or file system path to it
:param sids: the subset of sites to consider (if None, all sites)
"""
def __init__(self, dstore, full_lt, slices, imtls=(), poes=(), use_rates=0):
self.filename = dstore if isinstance(dstore, str) else dstore.filename
if len(full_lt.weights[0].dic) == 1: # no weights by IMT
self.weights = numpy.array([w['weight'] for w in full_lt.weights])
else:
self.weights = full_lt.weights
self.imtls = imtls
self.poes = poes
self.use_rates = use_rates
self.num_rlzs = len(full_lt.weights)
self.eids = None
if 'trt_smrs' not in dstore: # starting from hazard_curves.csv
self.trt_rlzs = full_lt.get_trt_rlzs([[0]])
else:
self.trt_rlzs = full_lt.get_trt_rlzs(dstore['trt_smrs'][:])
self.slices = slices
self._pmap = {}
@property
def sids(self):
self.init()
return list(self._pmap)
@property
def imts(self):
return list(self.imtls)
@property
def L(self):
return self.imtls.size
@property
def N(self):
self.init()
return len(self._pmap)
@property
def M(self):
return len(self.imtls)
@property
def R(self):
return len(self.weights)
[docs] def init(self):
"""
Build the probability curves from the underlying dataframes
"""
if self._pmap:
return self._pmap
G = len(self.trt_rlzs)
with hdf5.File(self.filename) as dstore:
for start, stop in self.slices:
rates_df = dstore.read_df('_rates', slc=slice(start, stop))
for sid, df in rates_df.groupby('sid'):
try:
array = self._pmap[sid].array
except KeyError:
array = numpy.zeros((self.L, G))
self._pmap[sid] = probability_map.ProbabilityCurve(
array)
array[df.lid, df.gid] = df.rate
return self._pmap
# used in risk calculations where there is a single site per getter
[docs] def get_hazard(self, gsim=None):
"""
:param gsim: ignored
:returns: a probability curve of shape (L, R) for the given site
"""
self.init()
if not self.sids:
# this happens when the poes are all zeros, as in
# classical_risk/case_3 for the first site
return probability_map.ProbabilityCurve(
numpy.zeros((self.L, self.num_rlzs)))
return self.get_hcurve(self.sids[0])
[docs] def get_hcurve(self, sid): # used in classical
"""
:param sid: a site ID
:returns: a ProbabilityCurve of shape L, R for the given site ID
"""
pmap = self.init()
pc0 = probability_map.ProbabilityCurve(
numpy.zeros((self.L, self.num_rlzs)))
if sid not in pmap: # no hazard for sid
return pc0
for g, t_rlzs in enumerate(self.trt_rlzs):
rlzs = t_rlzs % TWO24
rates = pmap[sid].array[:, g]
for rlz in rlzs:
pc0.array[:, rlz] += rates
pc0.array = to_probs(pc0.array)
return pc0
[docs] def get_mean(self):
"""
Compute the mean curve as a ProbabilityMap
:param grp:
if not None must be a string of the form "grp-XX"; in that case
returns the mean considering only the contribution for group XX
"""
self.init()
if len(self.weights) == 1: # one realization
# the standard deviation is zero
pmap = self.get(0)
for sid, hcurve in pmap.items():
array = numpy.zeros(hcurve.array.shape)
array[:, 0] = hcurve.array[:, 0]
hcurve.array = array
return pmap
L = self.imtls.size
pmap = probability_map.ProbabilityMap(self.sids, L, 1)
for sid in self.sids:
pmap[sid] = build_stat_curve(
self.get_hcurve(sid),
self.imtls, stats.mean_curve, self.weights)
return pmap
[docs]def get_rupture_getters(dstore, ct=0, srcfilter=None, rupids=None):
"""
:param dstore: a :class:`openquake.commonlib.datastore.DataStore`
:param ct: number of concurrent tasks
:returns: a list of RuptureGetters
"""
full_lt = dstore['full_lt'].init()
rup_array = dstore['ruptures'][:]
if rupids is not None:
rup_array = rup_array[numpy.isin(rup_array['id'], rupids)]
if len(rup_array) == 0:
raise NotFound('There are no ruptures in %s' % dstore)
proxies = [RuptureProxy(rec) for rec in rup_array]
maxweight = rup_array['n_occ'].sum() / (ct / 2 or 1)
rgetters = []
for block in general.block_splitter(
proxies, maxweight, operator.itemgetter('n_occ'),
key=operator.itemgetter('trt_smr')):
trt_smr = block[0]['trt_smr']
rbg = full_lt.get_rlzs_by_gsim(trt_smr)
rg = RuptureGetter(block, dstore.filename, trt_smr,
full_lt.trt_by(trt_smr), rbg)
rgetters.append(rg)
return rgetters
[docs]def get_ebruptures(dstore):
"""
Extract EBRuptures from the datastore
"""
ebrs = []
for rgetter in get_rupture_getters(dstore):
for proxy in rgetter.get_proxies():
ebrs.append(proxy.to_ebr(rgetter.trt))
return ebrs
[docs]def line(points):
return '(%s)' % ', '.join('%.5f %.5f %.5f' % tuple(p) for p in points)
[docs]def multiline(array3RC):
"""
:param array3RC: array of shape (3, R, C)
:returns: a MULTILINESTRING
"""
D, R, C = array3RC.shape
assert D == 3, D
lines = 'MULTILINESTRING(%s)' % ', '.join(
line(array3RC[:, r, :].T) for r in range(R))
return lines
[docs]def get_ebrupture(dstore, rup_id): # used in show rupture
"""
This is EXTREMELY inefficient, so it must be used only when you are
interested in a single rupture.
"""
rups = dstore['ruptures'][:] # read everything in memory
rupgeoms = dstore['rupgeoms'] # do not read everything in memory
idxs, = numpy.where(rups['id'] == rup_id)
if len(idxs) == 0:
raise ValueError(f"Missing {rup_id=}")
[rec] = rups[idxs]
trts = dstore.getitem('full_lt').attrs['trts']
trt = trts[rec['trt_smr'] // TWO24]
geom = rupgeoms[rec['geom_id']]
return get_ebr(rec, geom, trt)
# this is never called directly; get_rupture_getters is used instead
[docs]class RuptureGetter(object):
"""
:param proxies:
a list of RuptureProxies
:param filename:
path to the HDF5 file containing a 'rupgeoms' dataset
:param trt_smr:
source group index
:param trt:
tectonic region type string
:param rlzs_by_gsim:
dictionary gsim -> rlzs for the group
"""
def __init__(self, proxies, filename, trt_smr, trt, rlzs_by_gsim):
self.proxies = proxies
self.weight = sum(proxy['n_occ'] for proxy in proxies)
self.filename = filename
self.trt_smr = trt_smr
self.trt = trt
self.rlzs_by_gsim = rlzs_by_gsim
self.num_events = sum(int(proxy['n_occ']) for proxy in proxies)
@property
def num_ruptures(self):
return len(self.proxies)
@property
def seeds(self):
return [p['seed'] for p in self.proxies]
[docs] def get_proxies(self, min_mag=0):
"""
:returns: a list of RuptureProxies
"""
proxies = []
with datastore.read(self.filename) as dstore:
rupgeoms = dstore['rupgeoms']
for proxy in self.proxies:
if proxy['mag'] < min_mag:
# discard small magnitudes
continue
proxy.geom = rupgeoms[proxy['geom_id']]
proxies.append(proxy)
return proxies
# called in ebrisk calculations
[docs] def split(self, srcfilter, maxw):
"""
:returns: RuptureProxies with weight < maxw
"""
proxies = []
for proxy in self.proxies:
sids = srcfilter.close_sids(proxy.rec, self.trt)
if len(sids):
proxies.append(proxy)
rgetters = []
for block in general.block_splitter(proxies, maxw, weight):
rg = RuptureGetter(block, self.filename, self.trt_smr, self.trt,
self.rlzs_by_gsim)
rgetters.append(rg)
return rgetters
def __len__(self):
return len(self.proxies)
def __repr__(self):
wei = ' [w=%d]' % self.weight if hasattr(self, 'weight') else ''
return '<%s trt_smr=%d, %d rupture(s)%s>' % (
self.__class__.__name__, self.trt_smr, len(self), wei)