Source code for openquake.hazardlib.gsim.weatherill_2024

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`Weatherill2024ESHM20AvgSA`,
               :class:`Weatherill2024ESHM20SlopeGeologyAvgSA`,
               :class:`Weatherill2024ESHM20AvgSAHomoskedastic`

"""
from openquake.hazardlib.imt import AvgSA
from openquake.hazardlib.gsim.kotha_2020 import KothaEtAl2020ESHM20
from openquake.hazardlib.gsim.base import CoeffsTable
from openquake.hazardlib import const


[docs]class Weatherill2024ESHM20AvgSA(KothaEtAl2020ESHM20): """ This class implements a variation of the Kotha et al (2020; 2022) GMM that was used for the ESHM20, but here the predicted intensity measure is average SA (AvgSA) rather than SA. This is a form of direct AvgSA GMM, which is fit using the same data set as that of KothaEtAl2020 with AvgSA defined according the specifications of (among others) Iacoletti et al. (2023): AvgSA = sqrt(prod([0.2 x T <= T <= 1.5 x T])) where a total of 10 linearly-spaced conditioning periods in the range are used to define the average SA. As the same regression methods were used to fit AvgSA then all of the adjustment terms adopted by the ESHM20 (sigma_mu_epsilon, c3_epsilon, ergodic etc.) can be applied to the AvgSA GMM, which allows the same logic tree to be constructed for the direct AvgSA case. Further details on the compilation and application of the GMM are being developed in the following publication (in preparation): Weatherill, G (2024) "A Regionalised Direct AvgSA Ground Motion Model for Europe", (Journal TBC) As this is in preparation, futue changes to the model are possible so we therefore retain the experimental warning, which will be removed at a future date. """ experimental = True #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #: this GSIM can calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {AvgSA, } #: Supported standard deviation types is are only total std.dev DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameters are vs30, vs30measured and the eshm20_region REQUIRES_SITES_PARAMETERS = set(("region", "vs30", "vs30measured")) kind = "avgsa_ESHM20" # Coefficients obtained direclty from the regression outputs COEFFS = CoeffsTable(sa_damping=5, table="""\ imt e1 b1 b2 b3 c1 c2 c3 tau_c3 phis2s tau_event_0 tau_l2l phi_0 d0_obs d1_obs phi_s2s_obs d0_inf d1_inf phi_s2s_inf AvgSA(0.050) 4.3468615401 2.1512063226 0.3717451438 0.3840026031 -1.5844962290 0.3056929868 -0.6358197233 0.2763393183 0.6594454507 0.4280092597 0.5380302118 0.4676597188 2.61783357 -0.41984752 0.40314318 1.88712924 -0.29623828 0.54897643 AvgSA(0.100) 4.6536804102 2.1243118148 0.3569931311 0.3628813315 -1.5186700529 0.2841907202 -0.7361755939 0.3101014049 0.6722188832 0.4398426213 0.5568916029 0.4648998708 2.63178976 -0.42260122 0.42319496 1.78617139 -0.28015514 0.57163410 AvgSA(0.150) 4.7945771137 2.1274812721 0.3288504315 0.3795627756 -1.4389896655 0.2501908703 -0.7667357492 0.3157034067 0.6633675533 0.4434411516 0.5202488389 0.4582624492 2.71796680 -0.43603910 0.43472118 1.78935693 -0.28055203 0.57516812 AvgSA(0.200) 4.8268358912 2.1435342480 0.3057719029 0.4094215327 -1.3832602354 0.2227051661 -0.7550607691 0.3110395382 0.6458262629 0.4435212138 0.4841042855 0.4498230477 2.86217015 -0.45823486 0.43749194 1.87918582 -0.29464359 0.56498414 AvgSA(0.250) 4.8051268888 2.1754139829 0.2918562846 0.4426226923 -1.3412962888 0.2019136688 -0.7305447434 0.3035029231 0.6280883485 0.4407924746 0.4529410313 0.4425130460 3.06323423 -0.48950776 0.43044807 2.04792489 -0.32117497 0.54608798 AvgSA(0.300) 4.7620900260 2.2141154082 0.2835145315 0.4665423314 -1.3070686825 0.1860974192 -0.7071940818 0.2957328792 0.6153905644 0.4369210190 0.4322453716 0.4352045167 3.26556277 -0.52103527 0.41182470 2.25496936 -0.35374018 0.52720419 AvgSA(0.400) 4.6332719548 2.2947237222 0.2741828304 0.5159131190 -1.2627673311 0.1619710217 -0.6499258739 0.2794709669 0.5989732123 0.4255359229 0.3951049711 0.4216267430 3.49875383 -0.55740129 0.39503497 2.47642829 -0.38853586 0.50678238 AvgSA(0.500) 4.4778294883 2.3662343667 0.2696192831 0.5660951786 -1.2319346319 0.1446120370 -0.5980583921 0.2666824382 0.5902397100 0.4169401398 0.3687464707 0.4117459145 3.71388275 -0.59068507 0.37900446 2.68871629 -0.42186426 0.49004842 AvgSA(0.600) 4.3185533698 2.4277720222 0.2652148003 0.6175414034 -1.2077156215 0.1318085467 -0.5511719494 0.2536315305 0.5876115938 0.4103320095 0.3515066109 0.4034543724 3.87941606 -0.61580447 0.36505069 2.86525837 -0.44955313 0.47419374 AvgSA(0.700) 4.1672194228 2.4894825880 0.2650749306 0.6679669266 -1.1874512590 0.1228799964 -0.5133671436 0.2433881796 0.5867287159 0.4065674107 0.3347690807 0.3963077735 3.97630461 -0.62992274 0.36262323 2.98664886 -0.46856927 0.46461818 AvgSA(0.800) 4.0288646652 2.5542391769 0.2695180409 0.7085251974 -1.1727356202 0.1173776862 -0.4805689498 0.2315398128 0.5861237737 0.4053007828 0.3200552353 0.3900808395 4.04577748 -0.63992675 0.36701024 3.08292173 -0.48365672 0.45841564 AvgSA(0.900) 3.8947701849 2.6046828029 0.2708607782 0.7424403141 -1.1636251550 0.1140958019 -0.4495322496 0.2191350303 0.5868406504 0.4054880421 0.3128836707 0.3847701262 4.09468998 -0.64675747 0.37430943 3.17474995 -0.49805311 0.45633438 AvgSA(1.000) 3.7694600868 2.6564485947 0.2755580747 0.7773839055 -1.1569230243 0.1119008735 -0.4228857116 0.2077140636 0.5883712385 0.4076373926 0.3052586715 0.3809345790 4.11952534 -0.64980249 0.38194385 3.26430061 -0.51212861 0.45553548 AvgSA(1.250) 3.4706631778 2.7640114111 0.2863971445 0.8515842010 -1.1500139705 0.1098964051 -0.3642458982 0.1878359113 0.5911312275 0.4175841723 0.2877202407 0.3732270011 4.11297148 -0.64828200 0.38649790 3.37305996 -0.52913277 0.45322510 AvgSA(1.500) 3.2190113497 2.8630381148 0.3011679747 0.8833932182 -1.1522344562 0.1111509093 -0.3154533960 0.1759946561 0.5916370848 0.4251689388 0.2791019570 0.3684836574 4.09477274 -0.64520087 0.38407000 3.48254160 -0.54618847 0.45284527 AvgSA(1.750) 3.0052586300 2.9878647999 0.3413194350 0.9057249259 -1.1533431170 0.1156390944 -0.2832581008 0.1664335521 0.5921743466 0.4297625190 0.2848615012 0.3646174735 4.04481293 -0.63766481 0.38178972 3.54860458 -0.55647158 0.45407701 AvgSA(2.000) 2.7977898222 3.0610742969 0.3563412955 0.9382679687 -1.1527918383 0.1203796346 -0.2618124393 0.1609297797 0.5915803874 0.4379178489 0.2782289105 0.3621184180 3.98022776 -0.62800105 0.37429046 3.58857586 -0.56254997 0.45902122 AvgSA(2.500) 2.4526046480 3.2447441319 0.4175895089 0.9935574572 -1.1555045836 0.1319754237 -0.2362881913 0.1606151346 0.5851395458 0.4487655553 0.2727004457 0.3564559472 3.88094598 -0.61300917 0.36664751 3.58945419 -0.56256504 0.46109358 AvgSA(3.000) 2.1846343267 3.3795075185 0.4680279735 1.0273202155 -1.1533536786 0.1423911641 -0.2329857032 0.1478724120 0.5834092888 0.4569015623 0.2736582001 0.3508293944 3.78141847 -0.59784839 0.35646268 3.51803344 -0.55144112 0.45739762 AvgSA(3.500) 1.9409098870 3.4656531050 0.5118696601 1.0856421414 -1.1701293398 0.1553162861 -0.2020706851 0.1410898528 0.5750292172 0.4425943058 0.2958590722 0.3492035567 3.60781997 -0.57117670 0.34930242 3.48405639 -0.54602924 0.45663788 AvgSA(4.000) 1.7015054228 3.5163002844 0.5312213268 1.1456993040 -1.1841200080 0.1711021029 -0.1838747563 0.1437446953 0.5669140794 0.4500152389 0.2825370206 0.3499904629 3.43147290 -0.54394985 0.34725671 3.44930328 -0.54050316 0.45782846 AvgSA(4.500) 1.6213774162 3.7391842699 0.6641371123 1.1288485321 -1.1829236019 0.1847235866 -0.1807585867 0.1213816721 0.5757075561 0.4340712588 0.2587634879 0.3381428158 3.24877975 -0.51560770 0.35330607 3.43813135 -0.53856720 0.46219582 AvgSA(5.000) 1.4308131096 3.7717226445 0.6801268753 1.1816942442 -1.1999994884 0.1988877433 -0.1645299267 0.1239688756 0.5681631639 0.4376824137 0.2528453711 0.3391870321 3.07021475 -0.48775155 0.37025310 3.46440379 -0.54233758 0.47057169 """)
[docs]class Weatherill2024ESHM20SlopeGeologyAvgSA(Weatherill2024ESHM20AvgSA): """ Adaptation of the ESHM20-implemented Kotha et al. (2020) model taking direct Average Sa (AvgSA). For use when defining site amplification based on with slope and geology rather than inferred/measured Vs30. """ experimental = True kind = "avgsa_ESHM20_geology" #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #: this GSIM can calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {AvgSA, } #: Supported standard deviation types is are only total std.dev DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameter is not set REQUIRES_SITES_PARAMETERS = {"region", "slope", "geology"} #: Geological Units GEOLOGICAL_UNITS = [b"CENOZOIC", b"HOLOCENE", b"JURASSIC-TRIASSIC", b"CRETACEOUS", b"PALEOZOIC", b"PLEISTOCENE", b"PRECAMBRIAN", b"UNKNOWN"] COEFFS_FIXED = CoeffsTable(sa_damping=5, table="""\ imt V1 V2 phi_s2s AvgSA(0.0500) -0.23505110 -0.09359789 0.57524777 AvgSA(0.1000) -0.22027431 -0.08881495 0.58812515 AvgSA(0.1500) -0.21840469 -0.08830691 0.58411598 AvgSA(0.2000) -0.22694233 -0.09108064 0.56863949 AvgSA(0.2500) -0.24488926 -0.09681041 0.54758380 AvgSA(0.3000) -0.26548340 -0.10244796 0.52611308 AvgSA(0.4000) -0.28638555 -0.10745711 0.50708288 AvgSA(0.5000) -0.30532380 -0.11082860 0.49211675 AvgSA(0.6000) -0.32013378 -0.11294452 0.48141461 AvgSA(0.7000) -0.32893266 -0.11272525 0.47630018 AvgSA(0.8000) -0.33648250 -0.11327263 0.47333633 AvgSA(0.9000) -0.34306372 -0.11348846 0.47079169 AvgSA(1.0000) -0.35113716 -0.11364569 0.46851346 AvgSA(1.2500) -0.36007402 -0.11466989 0.46559047 AvgSA(1.5000) -0.37022391 -0.11702849 0.46276343 AvgSA(1.7500) -0.37390828 -0.11724920 0.45873202 AvgSA(2.0000) -0.37410840 -0.11642190 0.45449554 AvgSA(2.5000) -0.36880152 -0.11260637 0.45001503 AvgSA(3.0000) -0.35812342 -0.10696009 0.44400554 AvgSA(3.5000) -0.35244242 -0.10332236 0.44052465 AvgSA(4.0000) -0.35057632 -0.10238648 0.43874188 AvgSA(4.5000) -0.35153004 -0.10279447 0.43845098 AvgSA(5.0000) -0.35501872 -0.10406843 0.43952854 """) COEFFS_RANDOM_INT = CoeffsTable(sa_damping=5, table="""\ imt PRECAMBRIAN PALEOZOIC JURASSIC-TRIASSIC CRETACEOUS CENOZOIC PLEISTOCENE HOLOCENE UNKNOWN AvgSA(0.0500) 0.04440431 -0.02892322 -0.13716881 -0.05230186 -0.12125642 0.13765416 0.06883992 0.08875193 AvgSA(0.1000) 0.05826280 -0.03109745 -0.13813473 -0.06352593 -0.13533973 0.15914360 0.05630794 0.09438349 AvgSA(0.1500) 0.06136444 -0.03582568 -0.14426874 -0.07207127 -0.13073530 0.16589340 0.05878894 0.09685420 AvgSA(0.2000) 0.05489489 -0.04393126 -0.15284732 -0.07872104 -0.11334863 0.16353078 0.07350189 0.09692070 AvgSA(0.2500) 0.03889834 -0.05700330 -0.16243929 -0.08626987 -0.08802799 0.15550703 0.10516672 0.09416837 AvgSA(0.3000) 0.01726904 -0.07875437 -0.16472931 -0.08869378 -0.06875478 0.16247269 0.12386386 0.09732666 AvgSA(0.4000) -0.00698559 -0.09852521 -0.16288454 -0.09293336 -0.04994895 0.17192187 0.14216443 0.09719135 AvgSA(0.5000) -0.03405274 -0.10755560 -0.15122228 -0.09344633 -0.02605248 0.17131167 0.15637188 0.08464589 AvgSA(0.6000) -0.05530501 -0.11151177 -0.14050049 -0.09475509 -0.00910426 0.17319342 0.16415751 0.07382569 AvgSA(0.7000) -0.07046497 -0.10186102 -0.12503738 -0.09121494 0.00954194 0.15915530 0.16881371 0.05106735 AvgSA(0.8000) -0.08100857 -0.10108175 -0.11704089 -0.09029657 0.01785638 0.15923935 0.17297038 0.03936166 AvgSA(0.9000) -0.08690111 -0.10550544 -0.10866281 -0.08778019 0.01591340 0.17214756 0.16417060 0.03661799 AvgSA(1.0000) -0.09354606 -0.10486674 -0.09964153 -0.08371551 0.01831340 0.17557179 0.16050531 0.02737934 AvgSA(1.2500) -0.09940881 -0.10111492 -0.09054299 -0.07908341 0.02037411 0.17235513 0.15624033 0.02118056 AvgSA(1.5000) -0.10716225 -0.09805908 -0.08525698 -0.07701466 0.02482292 0.16497320 0.16166599 0.01603086 AvgSA(1.7500) -0.11240712 -0.09640150 -0.07907923 -0.07492911 0.02475436 0.16353442 0.15582629 0.01870188 AvgSA(2.0000) -0.11302015 -0.09738500 -0.07435901 -0.07247754 0.01973015 0.17174738 0.14805774 0.01770642 AvgSA(2.5000) -0.10428439 -0.08655460 -0.06468280 -0.06571842 0.01668539 0.16211274 0.13643014 0.00601195 AvgSA(3.0000) -0.09353572 -0.07076234 -0.05435509 -0.05966450 0.01505710 0.14951429 0.12893961 -0.01519336 AvgSA(3.5000) -0.08535614 -0.05972990 -0.04931505 -0.05545398 0.01676627 0.13843245 0.12889559 -0.03423925 AvgSA(4.0000) -0.08408289 -0.05771713 -0.05213470 -0.05701903 0.02138313 0.13457367 0.14136352 -0.04636655 AvgSA(4.5000) -0.08523161 -0.06157877 -0.05678981 -0.05891177 0.02493221 0.13809193 0.14938582 -0.04989800 AvgSA(5.0000) -0.08707645 -0.07066086 -0.06023941 -0.05852453 0.02485745 0.15039280 0.14328560 -0.04203460 """) COEFFS_RANDOM_GRAD = CoeffsTable(sa_damping=5, table="""\ imt PRECAMBRIAN PALEOZOIC JURASSIC-TRIASSIC CRETACEOUS CENOZOIC PLEISTOCENE HOLOCENE UNKNOWN AvgSA(0.0500) 0.01019174 -0.00671749 -0.03159087 -0.01206327 -0.02807261 0.03183337 0.01588836 0.02053076 AvgSA(0.1000) 0.01425687 -0.00742289 -0.03359498 -0.01538489 -0.03264778 0.03842344 0.01358267 0.02278758 AvgSA(0.1500) 0.01437239 -0.00841885 -0.03389235 -0.01686420 -0.03065271 0.03889881 0.01385255 0.02270436 AvgSA(0.2000) 0.01170863 -0.00949656 -0.03253001 -0.01682497 -0.02449309 0.03518655 0.01560313 0.02084633 AvgSA(0.2500) 0.00705422 -0.01006083 -0.03005226 -0.01631633 -0.01598760 0.02857851 0.01964204 0.01714224 AvgSA(0.3000) 0.00301254 -0.01247711 -0.02445906 -0.01294305 -0.01138575 0.02565267 0.01718870 0.01541106 AvgSA(0.4000) 0.00060871 -0.01269964 -0.01810166 -0.00958284 -0.00847633 0.02227698 0.01287763 0.01309715 AvgSA(0.5000) -0.00071633 -0.00917333 -0.00896442 -0.00463103 -0.00476396 0.01421873 0.00609513 0.00793522 AvgSA(0.6000) 0.00058715 -0.00464656 -0.00228301 -0.00076376 -0.00363741 0.00707727 -0.00090492 0.00457125 AvgSA(0.7000) 0.00300945 0.00312199 0.00490062 0.00364847 -0.00123591 -0.00482704 -0.00761969 -0.00099789 AvgSA(0.8000) 0.00494318 0.00665256 0.00804901 0.00624613 -0.00087300 -0.01059914 -0.01156916 -0.00284959 AvgSA(0.9000) 0.00845968 0.00738209 0.01049663 0.00927053 -0.00373428 -0.01211807 -0.01873849 -0.00101808 AvgSA(1.0000) 0.01281811 0.01009466 0.01266798 0.01167071 -0.00547594 -0.01734720 -0.02466090 0.00023260 AvgSA(1.2500) 0.01804985 0.01425655 0.01528740 0.01433855 -0.00642659 -0.02469494 -0.03057985 -0.00023097 AvgSA(1.5000) 0.02178052 0.01862543 0.01683443 0.01585680 -0.00566692 -0.03235509 -0.03269212 -0.00238303 AvgSA(1.7500) 0.02602045 0.02302291 0.01921894 0.01736831 -0.00599799 -0.03694157 -0.03760119 -0.00508986 AvgSA(2.0000) 0.02903551 0.02303283 0.01974201 0.01849300 -0.00773962 -0.03724914 -0.04329328 -0.00202131 AvgSA(2.5000) 0.03335929 0.02443580 0.02115975 0.02082427 -0.00890809 -0.04352827 -0.05107738 0.00373462 AvgSA(3.0000) 0.03582721 0.02429116 0.02152150 0.02287830 -0.00905799 -0.04962435 -0.05646569 0.01062986 AvgSA(3.5000) 0.03675706 0.02468699 0.02183835 0.02387250 -0.00893185 -0.05516898 -0.05878460 0.01573055 AvgSA(4.0000) 0.03384701 0.02392437 0.02059362 0.02285885 -0.00748610 -0.05664430 -0.05437988 0.01728643 AvgSA(4.5000) 0.03093938 0.02341728 0.01998863 0.02137510 -0.00724577 -0.05478948 -0.05063722 0.01695209 AvgSA(5.0000) 0.03004586 0.02383842 0.02117566 0.02018591 -0.00963392 -0.04934248 -0.05148373 0.01521428 """)
[docs]class Weatherill2024ESHM20AvgSAHomoskedastic(Weatherill2024ESHM20AvgSA): """Variant of the Weatherill2024ESHM20 direct GMPE for AvgSA with the homoskedastic sigma coming from the original mixed effects regression """ experimental = True kind = "avgsa_ESHM20_homoskedastic"