# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`Scala2025CampiFlegreiRepiMW`,
:class:`Scala2025CampiFlegreiRhypoMW`,
:class:`Scala2025CampiFlegreiRepiMD`
"""
import numpy as np
from scipy.constants import g
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA
def _compute_distance(rval2, C, ctx, h):
"""
Compute the distance function
"""
rval = np.sqrt(rval2 ** 2 + h ** 2)
return (C['c1'] + C['c2']*ctx.mag) * np.log10(rval)
def _compute_magnitude(ctx, C):
"""
Compute the magnitude function, equation (9):
"""
return C['a'] + C['b'] * ctx.mag
def _get_site_amplification(ctx, C):
"""
Compute the site amplification function given by FS = eiSi, for
i = 1,2 where Si are the coefficients determined through regression
analysis, and ei are dummy variables (0 or 1) used to denote the
different EC8 site classes. Due to the regression dataset only sites
B and C are considered. Hence in the current version site class A (rock)
is considered as equivalent to site class B, and site class D (soft soil)
is considered as equivalent to site class C.
"""
ssb, ssc = _get_site_type_dummy_variables(ctx)
return (C['sB'] * ssb) + (C['sC'] * ssc)
def _get_site_type_dummy_variables(ctx):
"""
Get site type dummy variables, which classified the ctx into
different site classes based on the shear wave velocity in the
upper 30 m (Vs30) according to the EC8 (CEN 2003):
class A: Vs30 > 800 m/s
class B: Vs30 = 360 - 800 m/s
class C: Vs30 = 180 - 360 m/s
class D: Vs30 < 180 m/s
"""
ssb = np.zeros(len(ctx.vs30))
ssc = np.zeros(len(ctx.vs30))
# Class C; Vs30 < 360 m/s.
idx = (ctx.vs30 < 360.0)
ssc[idx] = 1.0
# Class B; 360 m/s <= Vs30 <= 800 m/s.
idx = (ctx.vs30 >= 360.0) & (ctx.vs30 < 800.0)
ssb[idx] = 1.0
return ssb, ssc
[docs]class Scala2025CampiFlegreiRepiMW(GMPE):
"""
Implements GMPE developed by Antonio Scala and co-authors (2025) and
submitted as "Ground Motion Models for Campi Flegrei (Italy)"
Bulletin of Earthquake Engineering. DOI: https://doi.org/10.1007/s10518-025-02315-6
GMPE derives from earthquakes in the volcanic area of Campi Flegrei in Italy
in the magnitude range 1.5<Mw<4.0 (corresponding to a range 2.5<Md<4.4)
for epicentral distances <40 km, and for stiff soil (EC8-B) and soft soil (EC8-C).
!!!This class considers Epicentral distance (Repi) as distance measure
and Moment magnitude (Mw) as magnitude type.!!!
"""
#: Supported tectonic region type is 'volcanic'
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.VOLCANIC
#: Supported intensity measure types are PGA and SA
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, SA}
#: Supported intensity measure component is the maximum of two horizontal
#: components
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.GREATER_OF_TWO_HORIZONTAL
#: Supported standard deviation types are inter-event, intra-event
#: and total, page 1904
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {
const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT}
#: Required site parameter is Vs30
REQUIRES_SITES_PARAMETERS = {'vs30'}
#: Required rupture parameter is magnitude.
REQUIRES_RUPTURE_PARAMETERS = {'mag'}
#: Required distance measure is Repi.
REQUIRES_DISTANCES = {'repi'}
H=1.4
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.compute>`
for spec of input and result values.
"""
for m, imt in enumerate(imts):
C = self.COEFFS[imt]
rval_distance = getattr(ctx, next(iter(self.REQUIRES_DISTANCES)))
imean = (_compute_magnitude(ctx, C) +
_compute_distance(rval_distance, C, ctx, self.H) +
_get_site_amplification(ctx, C))
intra = np.sqrt(C['phi']**2 + C['sigma0']**2)
istddevs = [C['sigma'], C['tau'], intra]
# Convert units to g, but only for PGA and SA (not PGV)
if imt.string.startswith(("SA", "PGA")):
mean[m] = np.log((10.0 ** (imean - 2.0)) / g)
else: # PGV:
mean[m] = np.log(10.0 ** imean)
# Return stddevs in terms of natural log scaling
sig[m], tau[m], phi[m] = np.log(10.0 ** np.array(istddevs))
# mean_LogNaturale = np.log((10 ** mean) * 1e-2 / g)
# Sigma values in log10
COEFFS = CoeffsTable(sa_damping=5, table="""
IMT a b c1 c2 sB sC tau phi sigma0 sigma
pga 0.4094 0.6191 -3.6229 0.3639 0. 0.1493 0.1746 0.2260 0.2496 0.3793
pgv -1.6914 0.7191 -3.0713 0.3046 0. 0.0888 0.1749 0.2150 0.2023 0.3431
0.020 0.6010 0.5958 -3.8461 0.4186 0. 0.1392 0.1859 0.2304 0.2835 0.4099
0.030 0.7359 0.5996 -3.9841 0.4293 0. 0.1883 0.2007 0.2436 0.2972 0.4336
0.050 0.8067 0.6108 -3.9975 0.4276 0. 0.2107 0.1968 0.2346 0.2959 0.4258
0.075 0.6920 0.6134 -3.7435 0.3984 0. 0.2275 0.1926 0.2313 0.2753 0.4079
0.100 0.5311 0.6229 -3.3363 0.3146 0. 0.2256 0.1908 0.2447 0.2466 0.3964
0.150 0.1077 0.6844 -2.7511 0.2056 0. 0.2316 0.1732 0.2328 0.2158 0.3616
0.200 -0.1031 0.6885 -2.6100 0.2187 0. 0.2120 0.1716 0.2370 0.2006 0.3548
0.250 -0.3742 0.7479 -2.4484 0.1875 0. 0.1707 0.1819 0.2409 0.1918 0.3576
0.300 -0.5983 0.7810 -2.3072 0.1662 0. 0.1514 0.1870 0.2529 0.1830 0.3639
0.400 -0.9019 0.8098 -2.2243 0.1734 0. 0.1213 0.1940 0.2573 0.1709 0.3648
0.500 -1.2458 0.8286 -2.0745 0.1769 0. 0.1561 0.2139 0.2585 0.1627 0.3729
0.750 -1.6757 0.8439 -2.1797 0.2413 0. 0.1589 0.2251 0.2283 0.1621 0.3592
1.000 -1.9719 0.8556 -2.3701 0.3094 0. 0.1575 0.2329 0.2254 0.1702 0.3660
1.500 -2.3896 0.8644 -2.6398 0.3780 0. 0.2010 0.2425 0.2092 0.1781 0.3664
2.000 -2.6768 0.8664 -2.7034 0.3972 0. 0.2272 0.2509 0.2030 0.1844 0.3717
3.000 -2.7556 0.8177 -3.0000 0.4472 0. 0.1923 0.2360 0.1757 0.1917 0.3512
4.000 -2.7906 0.7817 -3.1544 0.4670 0. 0.1771 0.2207 0.1724 0.1965 0.3421
5.000 -2.7500 0.7332 -3.3747 0.5232 0. 0.1573 0.2095 0.1735 0.1991 0.3371
""")
[docs]class Scala2025CampiFlegreiRhypoMW(Scala2025CampiFlegreiRepiMW):
"""
!!!This class considers HYPOCENTRAL DISTANCE (Rhypo) as distance measure
and MOMENT MAGNITUDE (Mw) as magnitude type.!!!
"""
#: Required distance measure is Rhypo.
REQUIRES_DISTANCES = {'rhypo'}
H=1.0
# Sigma values in log10
COEFFS = CoeffsTable(sa_damping=5, table="""
IMT a b c1 c2 sB sC tau phi sigma0 sigma
pga 0.3439 0.9372 -3.7449 0.1718 0. 0.0511 0.1968 0.2787 0.2577 0.4276
pgv -1.7282 0.9950 -3.1904 0.1368 0. -0.0058 0.1468 0.2484 0.2107 0.3573
0.020 0.5330 0.9108 -3.9743 0.2321 0. 0.0498 0.2143 0.2846 0.2915 0.4603
0.030 0.6720 0.9307 -4.1345 0.2363 0. 0.0893 0.2414 0.2974 0.3031 0.4884
0.050 0.7207 0.9386 -4.1303 0.2377 0. 0.1244 0.2373 0.2707 0.3013 0.4694
0.075 0.6235 0.9193 -3.8811 0.2224 0. 0.1447 0.2192 0.2515 0.2796 0.4353
0.100 0.4839 0.9231 -3.4819 0.1392 0. 0.1288 0.2025 0.2637 0.2500 0.4160
0.150 0.0722 0.9656 -2.8804 0.0359 0. 0.1290 0.1604 0.2535 0.2176 0.3706
0.200 -0.1001 0.9469 -2.7656 0.0653 0. 0.1051 0.1405 0.2572 0.2025 0.3563
0.250 -0.3376 1.0018 -2.6452 0.0420 0. 0.0519 0.1416 0.2584 0.1917 0.3515
0.300 -0.5348 1.0284 -2.5341 0.0283 0. 0.0243 0.1390 0.2622 0.1819 0.3481
0.400 -0.8112 1.0424 -2.4822 0.0501 0. -0.0086 0.1312 0.2571 0.1706 0.3353
0.500 -1.1361 1.0357 -2.3516 0.0753 0. 0.0330 0.1457 0.2410 0.1632 0.3255
0.750 -1.5799 1.0264 -2.4344 0.1562 0. 0.0586 0.1596 0.2033 0.1652 0.3068
1.000 -1.8728 1.0248 -2.6233 0.2340 0. 0.0692 0.1749 0.1995 0.1748 0.3177
1.500 -2.3300 1.0284 -2.8500 0.3045 0. 0.1357 0.1881 0.1785 0.1893 0.3211
2.000 -2.6197 1.0301 -2.9099 0.3235 0. 0.1640 0.1985 0.1725 0.1962 0.3281
3.000 -2.7296 0.9921 -3.1817 0.3656 0. 0.1408 0.1867 0.1656 0.2035 0.3220
4.000 -2.7761 0.9643 -3.3290 0.3798 0. 0.1289 0.1748 0.1761 0.2087 0.3242
5.000 -2.7188 0.9130 -3.5715 0.4415 0. 0.1105 0.1682 0.1843 0.2119 0.3273
""")
[docs]class Scala2025CampiFlegreiRepiMD(Scala2025CampiFlegreiRepiMW):
"""
!!!This class considers EPICENTRAL DISTANCE (Repi) as distance measure
and DURATION MAGNITUDE (Md) as magnitude type. The implementation of this model became
necessary for practical purposes, as the official bulletin for the area uses Md
as the magnitude measure, as detailed in the paper.!!!
"""
# Sigma values in log10
COEFFS = CoeffsTable(sa_damping=5, table="""
IMT a b c1 c2 sB sC tau phi sigma0 sigma
pga 0.2109 0.6156 -3.3924 0.2565 0. 0.1412 0.2595 0.2267 0.2530 0.4275
pgv -2.0430 0.7552 -2.8356 0.2019 0. 0.0819 0.2443 0.2161 0.2053 0.3854
0.020 0.4061 0.5929 -3.5384 0.2818 0. 0.1299 0.2770 0.2303 0.2883 0.4614
0.030 0.5721 0.5869 -3.6702 0.2884 0. 0.1773 0.2947 0.2444 0.3022 0.4878
0.050 0.6933 0.5812 -3.7826 0.3178 0. 0.2003 0.2919 0.2344 0.2994 0.4794
0.075 0.5753 0.5855 -3.6236 0.3215 0. 0.2181 0.2731 0.2302 0.2770 0.4520
0.100 0.3010 0.6303 -3.1736 0.2333 0. 0.2182 0.2505 0.2432 0.2487 0.4287
0.150 -0.2887 0.7368 -2.4511 0.0936 0. 0.2276 0.2268 0.2313 0.2183 0.3906
0.200 -0.5327 0.7521 -2.3063 0.1039 0. 0.2071 0.2216 0.2369 0.2033 0.3828
0.250 -0.8199 0.8103 -2.1561 0.0793 0. 0.1666 0.2349 0.2412 0.1939 0.3885
0.300 -1.0524 0.8428 -2.0540 0.0725 0. 0.1482 0.2364 0.2529 0.1847 0.3924
0.400 -1.3113 0.8550 -2.0443 0.1013 0. 0.1178 0.2484 0.2577 0.1723 0.3972
0.500 -1.6931 0.8860 -1.9081 0.1076 0. 0.1511 0.2574 0.2590 0.1641 0.4003
0.750 -2.1378 0.9068 -2.0097 0.1630 0. 0.1503 0.2701 0.2275 0.1642 0.3894
1.000 -2.4076 0.9101 -2.2138 0.2277 0. 0.1463 0.2859 0.2242 0.1727 0.4023
1.500 -2.7775 0.9039 -2.5407 0.3066 0. 0.1876 0.3006 0.2074 0.1798 0.4071
2.000 -3.0828 0.9123 -2.6147 0.3269 0. 0.2131 0.3013 0.2012 0.1859 0.4073
3.000 -3.1462 0.8632 -2.8777 0.3618 0. 0.1775 0.2915 0.1746 0.1941 0.3913
4.000 -3.1714 0.8267 -2.9881 0.3664 0. 0.1627 0.2833 0.1719 0.1999 0.3870
5.000 -3.1195 0.7798 -3.1680 0.4042 0. 0.1413 0.2777 0.1735 0.2040 0.3858
""")