Source code for openquake.hazardlib.gsim.lanzano_2019

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`LanzanoEtAl2019`.
"""
import numpy as np
from scipy.constants import g

from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
from openquake.hazardlib.gsim import utils
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA


def _get_stddevs(C):
    """
    Return standard deviations as defined in table 1.
    """
    return [np.sqrt(C['tau'] ** 2 + C['phi_S2S'] ** 2 + C['phi_0'] ** 2),
            C['tau'],
            np.sqrt(C['phi_S2S'] ** 2 + C['phi_0'] ** 2)]


def _compute_distance(ctx, dist_type, C):
    """
    Compute the third term of the equation 1:
    FD(Mw,R) = [c1(Mw-Mref) + c2] * log10(R) + c3(R) (eq 4)
    Mref, h, Mh are in matrix C
    """
    dist = getattr(ctx, dist_type)
    R = np.sqrt(dist ** 2 + C['h'] ** 2)
    return ((C['c1'] * (ctx.mag - C['Mref']) + C['c2']) * np.log10(R) +
            C['c3']*R)


def _compute_magnitude(ctx, C):
    """
    Compute the second term of the equation 1:
    b1 * (Mw-Mh) for M<=Mh
    b2 * (Mw-Mh) otherwise
    """
    dmag = ctx.mag - C["Mh"]
    return np.where(
        ctx.mag <= C["Mh"], C['a'] + C['b1'] * dmag, C['a'] + C['b2'] * dmag)


def _site_amplification(ctx, C):
    """
    Compute the fourth term of the equation 1 :
    The functional form Fs in Eq. (1) represents the site amplification and
    it is given by FS = klog10(V0/800), where V0 = Vs30 when Vs30 <= 1500
    and V0=1500 otherwise
    """
    return C['k'] * np.log10(np.clip(ctx.vs30, -np.inf, 1500.0) / 800.0)


def _gen2ref_rock_scaling(C, vs30, kappa0, imt):
    """
    Computes the generic-to reference rock scaling factor as presented
    in:
    Lanzano, G., C. Felicetta, F. Pacor, D. Spallarossa, and P. Traversa
    (2022). Generic-To-Reference Rock Scaling Factors for Seismic Ground Motion
    in Italy, Bull. Seismol. Soc. Am. 112, 1583–1606, doi: 10.1785/0120210063

    The coefficients are from table S2. They allow to scale the grond motion to
    a reference rock from a generic site.

    kappa0 is in meter.
    """
    return C['a'] + C['b'] * np.log10(vs30/800.0) + C['c'] * kappa0


def _get_mechanism(ctx, C):
    """
    Compute the part of the second term of the equation 1 (FM(SoF)):
    Get fault type dummy variables
    """
    SS, _NF, TF = utils.get_fault_type_dummy_variables(ctx)
    return C['f1'] * SS + C['f2'] * TF


[docs]class LanzanoEtAl2019_RJB_OMO(GMPE): """ Implements GMPE developed by G.Lanzano, L.Luzi, F.Pacor, L.Luzi, C.Felicetta, R.Puglia, S. Sgobba, M. D'Amico and published as "A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy", Bull Seismol. Soc. Am., DOI 10.1785/0120180210 SA are given up to 10 s. The horizontal component of motion corresponds to RotD50, i.e. the median of the distribution of the intensity measures, obtained from the combination of the two horizontal components across all nonredundant azimuths (Boore, 2010). """ #: Supported tectonic region type is 'active shallow crust' because the #: equations have been derived from data from Italian database ITACA, as #: explained in the 'Introduction'. DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #: this GSIM can calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, SA} #: Supported intensity measure component is orientation-independent #: measure :attr:`~openquake.hazardlib.const.IMC.RotD50` DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RotD50 #: Supported standard deviation types are inter-event, intra-event #: and total, page 1904 DEFINED_FOR_STANDARD_DEVIATION_TYPES = { const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameter is only Vs30 REQUIRES_SITES_PARAMETERS = {'vs30'} #: Required rupture parameters are magnitude and rake (eq. 1). REQUIRES_RUPTURE_PARAMETERS = {'rake', 'mag'} #: Required distance measure is R Joyner-Boore distance (eq. 1). REQUIRES_DISTANCES = {'rjb'}
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ dist_type = 'rjb' if "RJB" in self.__class__.__name__ else 'rrup' for m, imt in enumerate(imts): C = self.COEFFS[imt] imean = (_compute_magnitude(ctx, C) + _compute_distance(ctx, dist_type, C) + _site_amplification(ctx, C) + _get_mechanism(ctx, C)) istddevs = _get_stddevs(C) # Convert units to g, but only for PGA and SA (not PGV): if imt.string.startswith(("SA", "PGA")): mean[m] = np.log((10.0 ** (imean - 2.0)) / g) else: # PGV: mean[m] = np.log(10.0 ** imean) # Return stddevs in terms of natural log scaling sig[m], tau[m], phi[m] = np.log(10.0 ** np.array(istddevs))
# mean_LogNaturale = np.log((10 ** mean) * 1e-2 / g) #: Coefficients from SA PGA and PGV from esupp Table S2 COEFFS = CoeffsTable(sa_damping=5, table=""" IMT a b1 b2 c1 c2 c3 k f1 f2 tau phi_S2S phi_0 Mh Mref h pga 3.4210464090 0.1939540900 -0.0219827770 0.2871492910 -1.4056354760 -0.0029112640 -0.3945759700 0.0859837430 0.0105002390 0.1559878330 0.2205815790 0.2000991410 5.5000000000 5.3239727140 6.9237429440 pgv 2.0774292740 0.3486332380 0.1359129150 0.2840909830 -1.4565164760 -0.0005727360 -0.5927640710 0.0410782350 -0.0123124280 0.1388529950 0.1641479240 0.1938530300 5.7000000000 5.0155451980 5.9310213910 0.010 3.4245483320 0.1925159840 -0.0226504290 0.2875277900 -1.4065574040 -0.0029092280 -0.3936344950 0.0859882130 0.0104732970 0.1561741750 0.2207225690 0.2001331220 5.5000000000 5.3265568770 6.9261983550 0.025 3.4831620980 0.1745072330 -0.0303191060 0.2917712270 -1.4243608230 -0.0028437300 -0.3808661290 0.0869007960 0.0121168920 0.1585446770 0.2231805710 0.2008657270 5.5000000000 5.3726995880 6.9273792970 0.040 3.6506006610 0.1159102530 -0.0646660020 0.3111117150 -1.4695119300 -0.0027310440 -0.3429284420 0.0870477700 0.0161177530 0.1644920090 0.2324602390 0.2038917110 5.5000000000 5.4968889680 6.9815887950 0.050 3.7315797180 0.0938111470 -0.0847276080 0.3184743710 -1.4684793000 -0.0029101640 -0.3201326870 0.0900141460 0.0129486380 0.1679197090 0.2388540270 0.2068943560 5.5000000000 5.5554373580 7.1218137630 0.070 3.8298265420 0.0775399420 -0.1074506180 0.3219830820 -1.4693089940 -0.0034922110 -0.2775266740 0.1027835460 0.0229271220 0.1761561100 0.2512937930 0.2101610770 5.5000000000 5.5053847230 7.2904858360 0.100 3.8042169810 0.1360109680 -0.0692203330 0.2908601720 -1.4016627520 -0.0043005780 -0.2686743880 0.1147824540 0.0248269350 0.1787478720 0.2637458450 0.2113961580 5.5000000000 5.3797044570 7.2742555760 0.150 3.6500641550 0.2565050720 0.0271400960 0.2339551240 -1.3111751160 -0.0047018230 -0.3207560810 0.1109474740 0.0198659050 0.1666766970 0.2596149390 0.2113112910 5.5000000000 5.0965762810 6.6927744070 0.200 3.5441076850 0.3561477800 0.0934922750 0.1983575680 -1.2809085750 -0.0045122270 -0.3768139640 0.0942130060 0.0116640180 0.1611613280 0.2493593750 0.2085199270 5.5000000000 4.8016422440 6.1273995880 0.250 3.4904108560 0.4258794620 0.1431007860 0.1768779550 -1.2710203890 -0.0038947210 -0.4275803190 0.0803226570 0.0097630190 0.1541437520 0.2349586720 0.2074459640 5.5000000000 4.7851094040 6.0907948160 0.300 3.4415379890 0.4717747480 0.1926037060 0.1614915210 -1.2949801370 -0.0032193060 -0.4770515440 0.0776675640 0.0061077540 0.1465825190 0.2248859230 0.2059316980 5.5000000000 4.7167541960 5.9795025500 0.350 3.3446630670 0.5062658120 0.2151211470 0.1564621150 -1.3178170520 -0.0029990590 -0.5306569440 0.0728397670 0.0026993430 0.1410870920 0.2175844480 0.2080023630 5.5000000000 4.3812120300 5.8130994320 0.400 3.2550575400 0.5331242140 0.2421620470 0.1502822370 -1.2806103220 -0.0027428760 -0.5562808430 0.0661760590 0.0011870680 0.1351999940 0.2142019330 0.2045660900 5.5000000000 4.4598958150 5.8073330520 0.450 3.3642504070 0.5364578580 0.1855438960 0.1489823740 -1.3018257500 -0.0022889740 -0.5950316360 0.0648499220 0.0049044230 0.1282711800 0.2116409250 0.2038392300 5.8000000000 4.4733992810 5.9505143630 0.500 3.3608504670 0.5595158750 0.2002091480 0.1445889550 -1.3577631940 -0.0018214290 -0.6175021300 0.0643336580 0.0049344710 0.1292553150 0.2101486370 0.2021378460 5.8000000000 4.3061718270 6.0827633150 0.600 3.3138586220 0.6159734570 0.2429526950 0.1308776180 -1.3751116050 -0.0011783100 -0.6515274580 0.0517509190 -0.0106807380 0.1388319340 0.2085483340 0.2012532670 5.8000000000 4.2621864430 6.0960486570 0.700 3.2215424560 0.6410331910 0.2631217720 0.1310231460 -1.3777586170 -0.0008288090 -0.6770253130 0.0348343350 -0.0138034390 0.1487445760 0.2078712150 0.1990177160 5.8000000000 4.2242791970 5.8705686780 0.750 3.1945748660 0.6615384790 0.2753805270 0.1279582150 -1.3816587680 -0.0006332620 -0.6770002780 0.0325604250 -0.0106144310 0.1493281120 0.2061474600 0.1985444200 5.8000000000 4.2193032080 5.9399226070 0.800 3.1477172010 0.6744754580 0.2843168320 0.1274454970 -1.3805238730 -0.0005387910 -0.6807607950 0.0301501140 -0.0093150580 0.1488858080 0.2059923330 0.1975251810 5.8000000000 4.1788159560 5.9158308810 0.900 3.0438692320 0.6960808380 0.2908389870 0.1307696640 -1.3712299710 -0.0003650810 -0.6901600210 0.0243867030 -0.0057274610 0.1510220880 0.2088059530 0.1964681960 5.8000000000 4.1280019240 5.6499915110 1.000 2.9329562820 0.7162569260 0.2992085610 0.1330221520 -1.3581003000 -0.0003481280 -0.7010380780 0.0187836090 -0.0026838270 0.1498799880 0.2099740670 0.1952706350 5.8000000000 4.0068764960 5.4265347610 1.200 2.7969754630 0.7522683610 0.3148914470 0.1356882390 -1.3418915980 -0.0001946160 -0.7211447760 0.0156692770 -0.0123682580 0.1475708640 0.2085469600 0.1935369570 5.8000000000 4.0000000000 5.2114400990 1.400 2.6681627290 0.7789439750 0.3310958850 0.1374053210 -1.3265422970 -0.0001071290 -0.7304122120 0.0122846810 -0.0159220670 0.1480430620 0.2089391760 0.1905401100 5.8000000000 4.0000000000 5.0911883420 1.600 2.5723270160 0.7847328080 0.3394239090 0.1454225100 -1.3308582950 0.0000000000 -0.7386216010 0.0034499080 -0.0231247190 0.1468224080 0.2119887010 0.1888323370 5.8000000000 4.0644421250 5.1206266020 1.800 2.4933386330 0.7900020080 0.3305433860 0.1542283440 -1.3289912520 0.0000000000 -0.7538191680 -0.0079587620 -0.0354487870 0.1517555390 0.2125975420 0.1861583190 5.8000000000 4.1264090540 5.2737078390 2.000 2.4060176790 0.7777348120 0.3199509080 0.1684793150 -1.3282655150 0.0000000000 -0.7472001440 -0.0111369970 -0.0375300390 0.1533446260 0.2112262090 0.1855430060 5.8000000000 4.2174770140 5.3910987520 2.500 2.2251396500 0.7789914250 0.3280727550 0.1827792890 -1.3593977940 0.0000000000 -0.7332744950 -0.0298755170 -0.0447073420 0.1581459890 0.2057405400 0.1873131960 5.8000000000 4.0841192840 5.2885431340 3.000 2.0653645110 0.7855377910 0.3585874760 0.1917372820 -1.3622291610 -0.0000725000 -0.6907295050 -0.0523142100 -0.0534721760 0.1730562270 0.2046940180 0.1856376420 5.8000000000 4.0000000000 5.0089807590 3.500 1.9413692760 0.8006822910 0.3924715050 0.2003105480 -1.3459808710 -0.0003295060 -0.6572701800 -0.0831135690 -0.0497671120 0.1694808560 0.2000002880 0.1858647730 5.8000000000 4.0000000000 5.2239249130 4.000 1.8088893770 0.7742293710 0.3863288840 0.2209746660 -1.3605497440 -0.0004514760 -0.6361325920 -0.0850828750 -0.0481922640 0.1729190890 0.1933427470 0.1876984700 5.8000000000 4.0000000000 5.1428287170 4.500 1.7067047740 0.7606577820 0.3932273220 0.2318655310 -1.3607064390 -0.0005424670 -0.6212289540 -0.0851787910 -0.0420861940 0.1750836140 0.1912528510 0.1875258320 5.8000000000 4.0000000000 4.9944908560 5.000 1.5674508510 0.7351540960 0.4075899440 0.2444741770 -1.3443973430 -0.0006142880 -0.5996128590 -0.0740372190 -0.0294935120 0.1724655580 0.1849939070 0.1920775290 5.8000000000 4.0995166500 4.9182635170 6.000 1.8015664050 0.6866068140 0.2400330900 0.2681399590 -1.4273047180 -0.0004079660 -0.5582643820 -0.0530155580 -0.0281879710 0.1608258320 0.1827343650 0.1868738640 6.3000000000 4.0725997780 5.6196373890 7.000 1.6596668010 0.6688108030 0.2910039860 0.2736804460 -1.4575752030 -0.0002092330 -0.5293913010 -0.0164879330 -0.0063757230 0.1639920950 0.1793061350 0.1785781870 6.3000000000 4.0597872070 5.3393074950 8.000 1.5146417080 0.6053146580 0.2927231020 0.3021009530 -1.4528220690 -0.0001882700 -0.5054615800 0.0012388470 -0.0011382590 0.1605307940 0.1737530120 0.1769475170 6.3000000000 4.2884159230 5.4984545260 9.000 1.4186859130 0.5413850170 0.2751627760 0.3283351620 -1.4351308790 0.0000000000 -0.5015172920 0.0083605610 0.0036314410 0.1593645820 0.1666775610 0.1771272580 6.3000000000 4.5884949620 6.0000000000 10.000 1.3142120360 0.4897308100 0.2536297690 0.3484436940 -1.4421713740 0.0000000000 -0.4867303450 0.0170019340 0.0044164240 0.1580884750 0.1616666450 0.1776399420 6.3000000000 4.6826704140 6.2391199410 """) COEFFS_SITE = CoeffsTable(sa_damping=5, table=""" IMT a b c PGA 0.107 -0.394 -11.775 0.01 0.107 -0.394 -11.775 0.025 0.137 -0.381 -12.812 0.04 0.168 -0.343 -14.276 0.05 0.182 -0.320 -15.012 0.07 0.180 -0.278 -15.428 0.10 0.162 -0.269 -15.014 0.15 0.119 -0.321 -13.081 0.20 0.084 -0.377 -11.228 0.25 0.057 -0.428 -9.620 0.30 0.042 -0.477 -8.360 0.35 0.030 -0.531 -7.276 0.40 0.018 -0.557 -6.266 0.45 0.009 -0.595 -5.563 0.50 0.002 -0.617 -5.174 0.60 -0.006 -0.651 -4.621 0.70 -0.010 -0.677 -4.184 0.75 -0.010 -0.677 -3.968 0.80 -0.009 -0.681 -3.756 0.90 -0.007 -0.690 -3.473 1.00 -0.008 -0.701 -3.298 1.20 -0.010 -0.721 -2.947 1.40 -0.012 -0.730 -2.630 1.60 -0.015 -0.739 -2.337 1.80 -0.021 -0.754 -2.054 2.00 -0.024 -0.747 -1.685 2.50 -0.026 -0.733 -0.954 3.00 -0.024 -0.691 -0.632 3.50 -0.020 -0.657 -0.499 4.00 -0.016 -0.636 -0.444 4.50 -0.016 -0.621 -0.437 5.00 -0.022 -0.600 -0.349 6.00 -0.034 -0.558 -0.409 7.00 -0.043 -0.529 -0.519 8.00 -0.048 -0.505 -0.601 9.00 -0.052 -0.502 -0.493 10.0 -0.055 -0.487 -0.414 """)
[docs]class LanzanoEtAl2019_RUP_OMO(LanzanoEtAl2019_RJB_OMO): """ Implements GMPE developed by G.Lanzano, L.Luzi, F.Pacor, L.Luzi, C.Felicetta, R.Puglia, S. Sgobba, M. D'Amico and published as "A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy", Bull Seismol. Soc. Am., DOI 10.1785/0120180210 SA are given up to 10 s. The prediction is valid for RotD50, which is the median of the distribution of the intensity measures, obtained from the combination of the two horizontal components across all nonredundant azimuths (Boore, 2010). """ #: Supported tectonic region type is 'active shallow crust' because the #: equations have been derived from data from Italian database ITACA, as #: explained in the 'Introduction'. DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #: this GSIM can calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, SA} #: Supported intensity measure component is orientation-independent #: measure :attr:`~openquake.hazardlib.const.IMC.RotD50` DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RotD50 #: Supported standard deviation types are inter-event, intra-event #: and total, page 1904 DEFINED_FOR_STANDARD_DEVIATION_TYPES = { const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameter is only Vs30 REQUIRES_SITES_PARAMETERS = {'vs30'} #: Required rupture parameters are magnitude and rake (eq. 1). REQUIRES_RUPTURE_PARAMETERS = {'rake', 'mag'} #: Required distance measure is Rrup (eq. 1). REQUIRES_DISTANCES = {'rrup'} #: Coefficients from SA PGA and PGV from esupp Table S2 COEFFS = CoeffsTable(sa_damping=5, table=""" IMT a b1 b2 c1 c2 c3 k f1 f2 tau phi_S2S phi_0 Mh Mref h pga 3.8476009130 0.0774422740 -0.1419991420 0.3478652700 -1.5533187520 -0.0018762870 -0.3804756380 0.0981863920 0.0312839980 0.1614849070 0.2214693590 0.2009857770 5.5000000000 5.7161225870 6.6412174580 pgv 2.3828051810 0.2389279260 0.0261097410 0.3406251950 -1.5178700950 0.0000000000 -0.5766806200 0.0496574190 0.0048867220 0.1377338650 0.1657577940 0.1947190870 5.7000000000 5.4986237650 5.2603202210 0.010 3.8506248160 0.0758687500 -0.1428322710 0.3483279440 -1.5537399740 -0.0018758340 -0.3795182780 0.0982026160 0.0312888740 0.1617017580 0.2216042230 0.2010196680 5.5000000000 5.7182953400 6.6339536220 0.025 3.9192103880 0.0557696980 -0.1527646590 0.3537205430 -1.5755362770 -0.0017839260 -0.3665232370 0.0994148360 0.0335230700 0.1648739390 0.2239781630 0.2017348520 5.5000000000 5.7583429090 6.6418028640 0.040 4.1174892770 -0.0090338610 -0.1935502850 0.3762847240 -1.6561808690 -0.0015888760 -0.3280283020 0.1003977920 0.0391489610 0.1728423350 0.2330030290 0.2047022980 5.5000000000 5.7989637460 6.7563889150 0.050 4.2100749050 -0.0339492180 -0.2162534440 0.3850707690 -1.6588279250 -0.0017350640 -0.3051389660 0.1038403080 0.0364310640 0.1769569220 0.2393492360 0.2072790280 5.5000000000 5.8513503470 6.9511244450 0.070 4.3116802080 -0.0505614890 -0.2390930110 0.3886131870 -1.6360072930 -0.0023201630 -0.2625774900 0.1169554080 0.0468045100 0.1850495830 0.2515478690 0.2106976190 5.5000000000 5.8718716570 7.2254468560 0.100 4.2619091410 0.0155135150 -0.1931111810 0.3536108950 -1.5607240070 -0.0031932490 -0.2541922120 0.1287730480 0.0481946680 0.1870755970 0.2641319770 0.2116384010 5.5000000000 5.7816875540 7.1942049600 0.150 4.0281333720 0.1490530750 -0.0842910460 0.2904596360 -1.4558853220 -0.0038111280 -0.3065865390 0.1234294560 0.0409920340 0.1747944550 0.2597923620 0.2119010310 5.5000000000 5.5070413070 6.0448362270 0.200 3.9581561800 0.2581085140 -0.0067616210 0.2493181400 -1.4304030950 -0.0035049250 -0.3631567460 0.1054336950 0.0308675300 0.1663095650 0.2500575700 0.2094881320 5.5000000000 5.4083470680 6.0814859680 0.250 3.8975164920 0.3349956980 0.0504825640 0.2239371150 -1.4165129430 -0.0028978730 -0.4143360740 0.0906817050 0.0279033120 0.1577890900 0.2357231150 0.2084723930 5.5000000000 5.4514190000 6.0143888830 0.300 3.8389631040 0.3840688150 0.1030589990 0.2069719800 -1.4440780970 -0.0022541340 -0.4636965900 0.0874129150 0.0234314860 0.1496049650 0.2259333260 0.2073687490 5.5000000000 5.3968851350 5.8135245350 0.350 3.7427724390 0.4229320630 0.1304612770 0.1993820250 -1.4408251060 -0.0020338970 -0.5174986310 0.0820839430 0.0191395270 0.1437104080 0.2185074890 0.2098701290 5.5000000000 5.2806552370 5.8177492120 0.400 3.6333013750 0.4525776370 0.1603621910 0.1917091960 -1.4190236990 -0.0018301470 -0.5434295700 0.0748159970 0.0169681240 0.1358758520 0.2149494900 0.2064883230 5.5000000000 5.2222009260 5.6501186180 0.450 3.7154781180 0.4556396130 0.1097027610 0.1893950510 -1.4373487560 -0.0013790170 -0.5822090800 0.0724614960 0.0200828160 0.1287203560 0.2124451610 0.2057455270 5.8000000000 5.2478823960 5.7811054530 0.500 3.7225644930 0.4791000150 0.1250270520 0.1847593340 -1.4792888180 -0.0008746350 -0.6048678230 0.0719131380 0.0201771040 0.1286518970 0.2113216850 0.2036659890 5.8000000000 5.2517779510 5.9416879950 0.600 3.6682670680 0.5366335520 0.1687213280 0.1707059500 -1.5049666160 -0.0002411380 -0.6392187290 0.0588865330 0.0046486850 0.1365657160 0.2100293700 0.2024728710 5.8000000000 5.2219439350 5.7575653430 0.700 3.5476098040 0.5605925270 0.1871321630 0.1717388940 -1.4920154380 0.0000000000 -0.6643250560 0.0414345280 0.0015640500 0.1444444740 0.2094865120 0.2002723840 5.8000000000 5.1693165540 5.2232086450 0.750 3.4860153280 0.5835516220 0.2009753460 0.1676162740 -1.4705858310 0.0000000000 -0.6633662960 0.0390747580 0.0045913530 0.1444192940 0.2075499490 0.1999247850 5.8000000000 5.1608011770 5.2390714490 0.800 3.4153176700 0.5963140190 0.2090305350 0.1674214930 -1.4563908280 0.0000000000 -0.6668025460 0.0364159000 0.0057644770 0.1435650390 0.2072863380 0.1990343260 5.8000000000 5.1084013460 5.0192508660 0.900 3.2837755070 0.6203647060 0.2174322510 0.1695628290 -1.4268589930 0.0000000000 -0.6750760810 0.0302972660 0.0092171050 0.1439597930 0.2100453700 0.1980967980 5.8000000000 5.0273018570 4.6888779800 1.000 3.1646298450 0.6394268750 0.2244466880 0.1725257020 -1.4104378560 0.0000000000 -0.6858604010 0.0243862220 0.0120110190 0.1425963490 0.2117095410 0.1964539980 5.8000000000 4.9152918370 4.2786484540 1.200 3.0000699100 0.6752604010 0.2398000250 0.1754340770 -1.3847402050 0.0000000000 -0.7049869270 0.0203886700 0.0020858610 0.1376747050 0.2106367700 0.1947050440 5.8000000000 4.8219418190 3.8902573240 1.400 2.8548239110 0.7016598380 0.2555322610 0.1774234610 -1.3693052940 0.0000000000 -0.7139420780 0.0169071570 -0.0016271820 0.1352870520 0.2110771360 0.1914515130 5.8000000000 4.7438528440 3.6282580540 1.600 2.7452884200 0.7087902600 0.2642955350 0.1848978730 -1.3616920690 0.0000000000 -0.7215074520 0.0083121970 -0.0083006310 0.1331921300 0.2141947700 0.1895359950 5.8000000000 4.7549230280 3.7025291230 1.800 2.6642129620 0.7154152980 0.2560921110 0.1931546230 -1.3507839540 0.0000000000 -0.7371011570 -0.0017321440 -0.0190618180 0.1382147940 0.2147123860 0.1868917710 5.8000000000 4.8130574510 3.9589480220 2.000 2.5756862730 0.7028435510 0.2447144810 0.2076118600 -1.3471065740 0.0000000000 -0.7307501910 -0.0050040160 -0.0212358510 0.1397875260 0.2129299180 0.1864771670 5.8000000000 4.8506617380 4.1479373910 2.500 2.3963959400 0.7033050700 0.2518818530 0.2222780470 -1.3743185070 0.0000000000 -0.7168917870 -0.0246343480 -0.0290936910 0.1437343890 0.2068222070 0.1887206470 5.8000000000 4.7203537770 4.1181389600 3.000 2.2442760420 0.7064408310 0.2805790070 0.2323944870 -1.3938825540 0.0000000000 -0.6755767110 -0.0449346600 -0.0392006000 0.1579916440 0.2051285540 0.1872462500 5.8000000000 4.5967141280 3.6676358910 3.500 2.1509457620 0.7197140890 0.3144950490 0.2408879210 -1.3056875070 0.0000000000 -0.6454403000 -0.0712686810 -0.0377413380 0.1574415450 0.2005062730 0.1876227070 5.8000000000 5.0000000000 3.9746700550 4.000 2.0269129410 0.6873092210 0.3037401830 0.2643086690 -1.3612857890 0.0000000000 -0.6250815320 -0.0736555330 -0.0363730290 0.1610380970 0.1940097180 0.1895939010 5.8000000000 4.8167431120 3.5842582520 4.500 1.9350799290 0.6687716310 0.3061467880 0.2778468310 -1.3144751280 0.0000000000 -0.6110294070 -0.0740593630 -0.0294989060 0.1623295570 0.1927623170 0.1893881480 5.8000000000 5.0000000000 3.2644687160 5.000 1.8090192480 0.6410330200 0.3183807710 0.2915021780 -1.3209096320 0.0000000000 -0.5897990580 -0.0632488020 -0.0172750890 0.1600134890 0.1872621910 0.1941054980 5.8000000000 5.0000000000 3.3548060430 6.000 1.9455190300 0.5901995040 0.1564201050 0.3140022010 -1.3375771520 0.0000000000 -0.5478118740 -0.0424599370 -0.0125854850 0.1509581730 0.1838901820 0.1900203310 6.3000000000 5.0000000000 3.9006202840 7.000 1.7832223090 0.5733237300 0.2019467610 0.3199016260 -1.3374591120 0.0000000000 -0.5197861950 -0.0045757050 0.0111162730 0.1555189840 0.1794302890 0.1819988840 6.3000000000 5.0000000000 3.7233318770 8.000 1.6472982850 0.5073993280 0.2006409390 0.3494261080 -1.4463813400 0.0000000000 -0.4956266160 0.0136222610 0.0172305930 0.1529394340 0.1736945870 0.1803254150 6.3000000000 4.8103931580 4.3526246000 9.000 1.5105710010 0.4450324910 0.1830610430 0.3751346350 -1.4367324130 0.0000000000 -0.4912014160 0.0208945970 0.0217267490 0.1529569490 0.1662440990 0.1804191720 6.3000000000 4.9295888090 4.5509858920 10.000 1.3966806560 0.3900867860 0.1589602600 0.3968394420 -1.4232531770 0.0000000000 -0.4765713040 0.0296164880 0.0222468600 0.1525077910 0.1614679730 0.1808181160 6.3000000000 5.0403227000 4.5998115120 """)
[docs]class LanzanoEtAl2019_RJB_OMOscaled(LanzanoEtAl2019_RJB_OMO): """ Implements GMPE developed by G.Lanzano, L.Luzi, F.Pacor, L.Luzi, C.Felicetta, R.Puglia, S. Sgobba, M. D'Amico and published as "A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy", Bull Seismol. Soc. Am., DOI 10.1785/0120180210 SA are given up to 10 s. The prediction is valid for RotD50, which is the median of the distribution of the intensity measures, obtained from the combination of the two horizontal components across all nonredundant azimuths (Boore, 2010). Application of a scaling factor that converts the prediction of LanzanoEtAl2019_RJB_OMO, valid for RotD50, to the corresponding prediction for the Maximum value. """ #: Coefficient table constructed from the electronic suplements of the #: original paper. COEFFS = CoeffsTable(sa_damping=5, table=""" IMT a b1 b2 c1 c2 c3 k f1 f2 tau phi_S2S phi_0 Mh Mref h pga 3.4597007 0.1939541 -0.0219828 0.2871493 -1.4056355 -0.0029113 -0.3945760 0.0859837 0.0105002 0.1559878 0.2205816 0.2000991 5.5000000 5.3239727 6.9237429 pgv 2.1195033 0.3486332 0.1359129 0.2840910 -1.4565165 -0.0005727 -0.5927641 0.0410782 -0.0123124 0.1388530 0.1641479 0.1938530 5.7000000 5.0155452 5.9310214 0.05 3.7703201 0.0938111 -0.0847276 0.3184744 -1.4684793 -0.0029102 -0.3201327 0.0900141 0.0129486 0.1679197 0.2388540 0.2068944 5.5000000 5.5554374 7.1218138 0.10 3.8445966 0.1360110 -0.0692203 0.2908602 -1.4016628 -0.0043006 -0.2686744 0.1147825 0.0248269 0.1787479 0.2637458 0.2113962 5.5000000 5.3797045 7.2742556 0.15 3.6932915 0.2565051 0.0271401 0.2339551 -1.3111751 -0.0047018 -0.3207561 0.1109475 0.0198659 0.1666767 0.2596149 0.2113113 5.5000000 5.0965763 6.6927744 0.20 3.5896393 0.3561478 0.0934923 0.1983576 -1.2809086 -0.0045122 -0.3768140 0.0942130 0.0116640 0.1611613 0.2493594 0.2085199 5.5000000 4.8016422 6.1273996 0.30 3.4885390 0.4717747 0.1926037 0.1614915 -1.2949801 -0.0032193 -0.4770515 0.0776676 0.0061078 0.1465825 0.2248859 0.2059317 5.5000000 4.7167542 5.9795026 0.40 3.3047378 0.5331242 0.2421620 0.1502822 -1.2806103 -0.0027429 -0.5562808 0.0661761 0.0011871 0.1352000 0.2142019 0.2045661 5.5000000 4.4598958 5.8073331 0.50 3.4107980 0.5595159 0.2002091 0.1445890 -1.3577632 -0.0018214 -0.6175021 0.0643337 0.0049345 0.1292553 0.2101486 0.2021378 5.8000000 4.3061718 6.0827633 0.75 3.2462015 0.6615385 0.2753805 0.1279582 -1.3816588 -0.0006333 -0.6770003 0.0325604 -0.0106144 0.1493281 0.2061475 0.1985444 5.8000000 4.2193032 5.9399226 1.00 2.9835849 0.7162569 0.2992086 0.1330222 -1.3581003 -0.0003481 -0.7010381 0.0187836 -0.0026838 0.1498800 0.2099741 0.1952706 5.8000000 4.0068765 5.4265348 2.00 2.4561293 0.7777348 0.3199509 0.1684793 -1.3282655 0.0000000 -0.7472001 -0.0111370 -0.0375300 0.1533446 0.2112262 0.1855430 5.8000000 4.2174770 5.3910988 3.00 2.1181011 0.7855378 0.3585875 0.1917373 -1.3622292 -0.0000725 -0.6907295 -0.0523142 -0.0534722 0.1730562 0.2046940 0.1856376 5.8000000 4.0000000 5.0089808 4.00 1.8623784 0.7742294 0.3863289 0.2209747 -1.3605497 -0.0004515 -0.6361326 -0.0850829 -0.0481923 0.1729191 0.1933427 0.1876985 5.8000000 4.0000000 5.1428287 """)
[docs]class LanzanoEtAl2019_RJB_OMO_RefRock(GMPE): """ Implements GMPE developed by G.Lanzano, L.Luzi, F.Pacor, L.Luzi, C.Felicetta, R.Puglia, S. Sgobba, M. D'Amico and published as "A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy", Bull Seismol. Soc. Am., DOI 10.1785/0120180210 SA are given up to 10 s. The horizontal component of motion corresponds to RotD50, i.e. the median of the distribution of the intensity measures, obtained from the combination of the two horizontal components across all nonredundant azimuths (Boore, 2010). In this version we scale the ground-motion to reference rock conditions using the findings of Lanzano et al. (2020) "Generic-To-Reference Rock Scaling Factors for Seismic Ground Motion in Italy", BSSA, 112(3), https://doi.org/10.1785/0120210063 """ #: Supported tectonic region type is 'active shallow crust' because the #: equations have been derived from data from Italian database ITACA, as #: explained in the 'Introduction'. DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #: this GSIM can calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA} #: Supported intensity measure component is orientation-independent #: measure :attr:`~openquake.hazardlib.const.IMC.RotD50` DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RotD50 #: Supported standard deviation types are inter-event, intra-event #: and total, page 1904 DEFINED_FOR_STANDARD_DEVIATION_TYPES = { const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameter is only Vs30 REQUIRES_SITES_PARAMETERS = {'vs30', 'kappa0'} #: Required rupture parameters are magnitude and rake (eq. 1). REQUIRES_RUPTURE_PARAMETERS = {'rake', 'mag'} #: Required distance measure is R Joyner-Boore distance (eq. 1). REQUIRES_DISTANCES = {'rjb'} COEFFS = LanzanoEtAl2019_RJB_OMO.COEFFS COEFFS_SITE = LanzanoEtAl2019_RJB_OMO.COEFFS_SITE def __init__(self, kappa0=None): """ Instantiate the model. When the kappa0 value is provided when initializing the class, this overrides the kappa0 value assigned to the site. """ self.kappa0 = kappa0
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ if self.kappa0 is not None: ctx = ctx.copy() ctx.kappa0 = self.kappa0 [dist_type] = self.REQUIRES_DISTANCES for m, imt in enumerate(imts): C = self.COEFFS[imt] imean = (_compute_magnitude(ctx, C) + _compute_distance(ctx, dist_type, C) + _site_amplification(ctx, C) + _get_mechanism(ctx, C)) istddevs = _get_stddevs(C) # Return stddevs in terms of natural log scaling sig[m], tau[m], phi[m] = np.log(10.0 ** np.array(istddevs)) # Apply correction to reference according to Lanzano et al. # (2022; BSSA) SCOF = self.COEFFS_SITE[imt] adjustment = _gen2ref_rock_scaling(SCOF, ctx.vs30, ctx.kappa0, imt) imean += adjustment # Convert units to g, but only for PGA and SA (not PGV): mean[m] = np.log((10.0 ** (imean - 2.0)) / g)