Source code for openquake.hazardlib.gsim.chiou_youngs_2014

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`ChiouYoungs2014`
               :class:`ChiouYoungs2014PEER`
               :class:`ChiouYoungs2014NearFaultEffect`
"""
import os
import pathlib
import numpy as np

from openquake.baselib.general import CallableDict
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable, add_alias
from openquake.hazardlib.gsim.abrahamson_2014 import get_epistemic_sigma
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA

CONSTANTS = {"c2": 1.06, "c4": -2.1, "c4a": -0.5, "crb": 50.0,
             "c8a": 0.2695, "c11": 0.0, "phi6": 300.0, "phi6jp": 800.0}


def _get_centered_z1pt0(region, ctx):
    """
    Get z1pt0 centered on the Vs30- dependent average z1pt0(m)
    California and non-Japan regions
    """
    if region == "JPN":
        mean_z1pt0 = (-5.23 / 2.) * np.log(((ctx.vs30 ** 2.) + 412.39 ** 2.)
                                           / (1360 ** 2. + 412.39 ** 2.))
        return ctx.z1pt0 - np.exp(mean_z1pt0)

    #: California and non-Japan regions
    mean_z1pt0 = (-7.15 / 4.) * np.log(((ctx.vs30) ** 4. + 570.94 ** 4.)
                                       / (1360 ** 4. + 570.94 ** 4.))
    return ctx.z1pt0 - np.exp(mean_z1pt0)


def _get_centered_ztor(ctx):
    """
    Get ztor centered on the M- dependent avarage ztor(km)
    by different fault types.
    """
    # Strike-slip and normal faulting
    mean_ztor = np.clip(2.673 - 1.136 * np.clip(ctx.mag - 4.970, 0., None),
                        0., None) ** 2
    # Reverse and reverse-oblique faulting
    rev = (30. <= ctx.rake) & (ctx.rake <= 150.)
    mean_ztor[rev] = np.clip(2.704 - 1.226 * np.clip(
        ctx.mag[rev] - 5.849, 0.0, None), 0., None) ** 2
    return ctx.ztor - mean_ztor


def _get_ln_y_ref(ctx, C):
    """
    Get an intensity on a reference soil.
    Implements eq. 13a.
    """
    # Reverse faulting flag
    Frv = 1. if 30 <= ctx.rake <= 150 else 0.
    # Normal faulting flag
    Fnm = 1. if -120 <= ctx.rake <= -60 else 0.
    # A part in eq. 11
    mag_test1 = np.cosh(2. * np.clip(ctx.mag - 4.5, 0., None))
    # Centered DPP
    centered_dpp = 0
    # Centered Ztor
    centered_ztor = 0

    dist_taper = np.fmax(1 - (np.fmax(ctx.rrup - 40,
                              np.zeros_like(ctx)) / 30.),
                         np.zeros_like(ctx))
    dist_taper = dist_taper.astype(np.float64)
    ln_y_ref = (
        # first part of eq. 11
        C['c1']
        + (C['c1a'] + C['c1c'] / mag_test1) * Frv
        + (C['c1b'] + C['c1d'] / mag_test1) * Fnm
        + (C['c7'] + C['c7b'] / mag_test1) * centered_ztor
        + (C['c11'] + C['c11b'] / mag_test1) *
        np.cos(np.radians(ctx.dip)) ** 2
        # second part
        + C['c2'] * (ctx.mag - 6)
        + ((C['c2'] - C['c3']) / C['cn'])
        * np.log(1 + np.exp(C['cn'] * (C['cm'] - ctx.mag)))
        # third part
        + C['c4']
        * np.log(ctx.rrup + C['c5']
                 * np.cosh(C['c6'] * np.clip(ctx.mag - C['chm'], 0, None)))
        + (C['c4a'] - C['c4'])
        * np.log(np.sqrt(ctx.rrup ** 2 + C['crb'] ** 2))
        # forth part
        + (C['cg1'] + C['cg2'] / (
            np.cosh(np.clip(ctx.mag - C['cg3'], 0, None))))
        * ctx.rrup
        # fifth part
        + C['c8'] * dist_taper
        * np.clip((ctx.mag - 5.5, 0) / 0.8, 0., 1.)
        * np.exp(-1 * C['c8a'] * (ctx.mag - C['c8b']) ** 2) * centered_dpp
        # sixth part
        # + C['c9'] * Fhw * np.cos(math.radians(ctx.dip)) *
        # (C['c9a'] + (1 - C['c9a']) * np.tanh(ctx.rx / C['c9b']))
        # * (1 - np.sqrt(ctx.rjb ** 2 + ctx.ztor ** 2)
        #   / (ctx.rrup + 1.0))
    )
    return ln_y_ref


def _get_mean(ctx, C, ln_y_ref, exp1, exp2):
    """
    Add site effects to an intensity. Implements eq. 13b.
    """
    eta = epsilon = 0.
    ln_y = (
        # first line of eq. 12
        ln_y_ref + eta
        # second line
        + C['phi1'] * np.log(ctx.vs30 / 1130).clip(-np.inf, 0)
        # third line
        + C['phi2'] * (exp1 - exp2)
        * np.log((np.exp(ln_y_ref) * np.exp(eta) + C['phi4']) / C['phi4'])
        # fourth line - removed
        # fifth line
        + epsilon)
    return ln_y


def _get_basin_term(C, ctx, region):
    """
    Returns the basin depth scaling
    """
    # Get basin depth
    dz1pt0 = _get_centered_z1pt0(region, ctx)

    # for Z1.0 = 0.0 no deep soil correction is applied
    dz1pt0[ctx.z1pt0 <= 0.0] = 0.0
    if region == "JPN":
        return C["phi5jp"] * (1.0 - np.exp(-dz1pt0 / CONSTANTS["phi6jp"]))
    return C["phi5"] * (1.0 - np.exp(-dz1pt0 / CONSTANTS["phi6"]))


[docs]def get_directivity(C, ctx): """ Returns the directivity term, if any. The directivity prediction parameter is centered on the average directivity prediction parameter. Here we set the centered_dpp equal to zero, since the near fault directivity effect prediction is off by default in our calculation. """ try: cdpp = ctx.rcdpp except AttributeError: # No directivity term return 0. f_dir = np.exp(-C["c8a"] * ((ctx.mag - C["c8b"]) ** 2.)) * cdpp f_dir *= np.clip((ctx.mag - 5.5) / 0.8, 0., 1.) rrup_max = ctx.rrup - 40. rrup_max[rrup_max < 0.0] = 0.0 rrup_max = 1.0 - (rrup_max / 30.) rrup_max[rrup_max < 0.0] = 0.0 return C["c8"] * rrup_max * f_dir
get_far_field_distance_scaling = CallableDict()
[docs]@get_far_field_distance_scaling.add("CAL") def get_far_field_distance_scaling_1(region, C, mag, rrup, delta_g): """ Returns the far-field distance scaling term - both magnitude and distance - for California and other regions """ # Get the attenuation distance scaling (geometric spreading term) f_r = (CONSTANTS["c4a"] - CONSTANTS["c4"]) * np.log( np.sqrt(rrup ** 2. + CONSTANTS["crb"] ** 2.)) # Get the magnitude dependent term gamma = C["cg1"] + C["cg2"] / np.cosh(np.clip(mag - C["cg3"], 0.0, None)) # Adjust path if delta_g (from Boore et al. 2022 CY14 adjustments paper) f_rm = (gamma + delta_g) * rrup return f_r + f_rm
[docs]@get_far_field_distance_scaling.add("JPN") def get_far_field_distance_scaling_2(region, C, mag, rrup, delta_g): """ Returns the far-field distance scaling term - both magnitude and distance - for Japan """ # Get the attenuation distance scaling (geometric spreading term) f_r = (CONSTANTS["c4a"] - CONSTANTS["c4"]) * np.log( np.sqrt(rrup ** 2. + CONSTANTS["crb"] ** 2.)) # Get the magnitude dependent term gamma = (C["cg1"] + C["cg2"] / np.cosh(np.clip(mag - C["cg3"], 0.0, None))) # Adjust path if delta_g (from Boore et al. 2022 CY14 adjustments paper) f_rm = (gamma + delta_g) * rrup # Apply adjustment factor for Japan f_rm[(mag > 6.0) & (mag < 6.9)] *= C["gjpit"] return f_r + f_rm
[docs]@get_far_field_distance_scaling.add("ITA") def get_far_field_distance_scaling_3(region, C, mag, rrup, delta_g): """ Returns the far-field distance scaling term - both magnitude and distance - for Italy """ # Get the attenuation distance scaling (geometric spreading term) f_r = (CONSTANTS["c4a"] - CONSTANTS["c4"]) * np.log( np.sqrt(rrup ** 2. + CONSTANTS["crb"] ** 2.)) # Get the magnitude dependent term gamma = (C["cg1"] + C["cg2"] / np.cosh(np.clip(mag - C["cg3"], 0.0, None))) # Adjust path if delta_g (from Boore et al. 2022 CY14 adjustments paper) f_rm = (gamma + delta_g) * rrup # Apply adjustment factor for Italy f_rm[(mag > 6.0) & (mag < 6.9)] *= C["gjpit"] return f_r + f_rm
[docs]@get_far_field_distance_scaling.add("WEN") def get_far_field_distance_scaling_4(region, C, mag, rrup, delta_g): """ Returns the far-field distance scaling term - both magnitude and distance - for Wenchuan """ # Get the attenuation distance scaling (geometric spreading term) f_r = (CONSTANTS["c4a"] - CONSTANTS["c4"]) * np.log( np.sqrt(rrup ** 2. + CONSTANTS["crb"] ** 2.)) # Get the magnitude dependent term gamma = (C["cg1"] + C["cg2"] / np.cosh(np.clip(mag - C["cg3"], 0.0, None))) # Adjust path if delta_g (from Boore et al. 2022 CY14 adjustments paper) f_rm = (gamma + delta_g) * rrup # Apply adjustment factor for Wenchuan return f_r + (f_rm * C["gwn"])
[docs]def get_geometric_spreading(C, mag, rrup): """ Returns the near-field geometric spreading term """ # Get the near-field magnitude scaling return CONSTANTS["c4"] * np.log( rrup + C["c5"] * np.cosh(C["c6"] * np.clip(mag - C["chm"], 0.0, None)))
[docs]def get_hanging_wall_term(C, ctx): """ Returns the hanging wall term """ fhw = np.zeros(ctx.rrup.shape) idx = ctx.rx >= 0.0 if np.any(idx): fdist = 1.0 - (np.sqrt(ctx.rjb[idx] ** 2. + ctx.ztor[idx] ** 2.) / (ctx.rrup[idx] + 1.0)) fdist *= C["c9a"] + (1.0 - C["c9a"]) * np.tanh(ctx.rx[idx] / C["c9b"]) fhw[idx] += C["c9"] * np.cos(np.radians(ctx.dip[idx])) * fdist return fhw
[docs]def get_linear_site_term(region, C, ctx): """ Returns the linear site scaling term """ if region == "JPN": return C["phi1jp"] * np.log(ctx.vs30 / 1130).clip(-np.inf, 0.0) return C["phi1"] * np.log(ctx.vs30 / 1130).clip(-np.inf, 0.0)
[docs]def get_delta_c1(rrup, imt, mag): """ Return the delta_c1 long-period adjustment parameter as defined by equation 2 of Boore et al.(2022). """ # Initialise output delta_c1 = np.zeros_like(mag) # Apply correction only to 'PGA' if str(imt) != 'PGA': # Computing tB, the period below which the correction do not apply tb = 2 - np.maximum(0, mag-7) # Apply correction only if period is larger than tb idx = float(imt.period) > tb if np.any(idx): # Equations 3b, 3c and 3d s1 = 0.2704 - 0.0694 * np.maximum(mag[idx]-7, 0) s2 = -0.1342 + 0.0716 * np.maximum(mag[idx]-7, 0) s3 = 0.2513 - 0.0419 * np.maximum(mag[idx]-7, 0) # Equation 3a - Note that we add a capping to rrup to avoid an # overflow dst = rrup[idx] dst[dst>100] = 100 s = s1 + s2 / np.cosh(s3 * dst) # Equation 2 delta_c1[idx] = s * np.maximum( np.log(float(imt.period)/tb[idx]), 0)**2 return delta_c1
def _get_delta_cm(conf, imt): """ Return the delta_cm parameter as defined by equation A19 in Boore et al. (2022) for the host-to-target region source-scaling adjustment. """ # If the stress parameters are not defined at the instantiation level, the # conf dictionary does not contain the source_function_table source_function_table = conf.get('source_function_table', None) # Get stress params stress_par_host = conf.get('stress_par_host') stress_par_targ = conf.get('stress_par_target') C = source_function_table[imt] # Compute chi if stress_par_targ > stress_par_host: chi = C['chi_delta_pos'] else: chi = C['chi_delta_neg'] # Compute delta_cm delta_cm = chi * 2/3 * np.log10(stress_par_targ / stress_par_host) return delta_cm def _get_delta_g(delta_gamma_tab, ctx, imt): """ Returns the delta_g parameter as defined by equation 13 in Boore et al. (2022) for the host-to-target region path adjustment """ # Get coefficients for imt C = delta_gamma_tab[imt] # Compute delta_g (magnitude-dependent) delta_g = C['c0'] + C['c1']*(ctx.mag - 6) + C['c2']*( ctx.mag - 6)**2 + C['c3']*(ctx.mag - 6)**3 return delta_g
[docs]def get_ln_y_ref(region, C, ctx, conf): """ Returns the ground motion on the reference rock, described fully by Equation 11 in CY14 (page 1131). """ # Read configuration parameters imt = conf.get('imt') add_delta_c1 = conf.get('add_delta_c1') use_hw = conf.get('use_hw') alpha_nm = conf.get('alpha_nm') # Get the region name from the name of the class delta_ztor = _get_centered_ztor(ctx) # If stress correction required get delta cm delta_cm = 0 if 'source_function_table' in conf: delta_cm = _get_delta_cm(conf, imt) # If path correction required get delta g delta_g = 0 if 'delta_gamma_tab' in conf: delta_g = _get_delta_g(conf['delta_gamma_tab'], ctx, imt) # Compute median ground motion: # - The `get_magnitude_scaling` function when `delta_cm` ≠ 0 applies a # correction to ground motion that accounts for the differences in the # stress parameter between the host and target region as described in # Boore at al. (2022) # - The `get_source_scaling_terms` function applies a correction to # ground motion for the style of faulting as per Boore et al. (2022; # eq. 5). The `alpha_nm` is provided at the instantiation level. # - The `get_far_field_distance_scaling` function applies a correction to # ground motion for anelastic attenuation as per Boore et al. (2022) out = (get_stress_scaling(C) + get_magnitude_scaling(C, ctx.mag, delta_cm) + get_source_scaling_terms(C, ctx, delta_ztor, alpha_nm) + get_geometric_spreading(C, ctx.mag, ctx.rrup) + get_far_field_distance_scaling( region, C, ctx.mag, ctx.rrup, delta_g) + get_directivity(C, ctx)) # Adjust ground-motion for the hanging wall effect if use_hw: out += get_hanging_wall_term(C, ctx) # Long period adjustment as per Boore et al. (2022; see equation 4) if add_delta_c1: out += get_delta_c1(ctx.rrup, imt, ctx.mag) return out
[docs]def get_magnitude_scaling(C, mag, delta_cm): """ Returns the magnitude scaling """ f_m = np.zeros_like(mag) f_m = np.log(1.0 + np.exp(C["cn"] * (C["cm"] + delta_cm - mag))) f_m = (CONSTANTS["c2"] * (mag - 6.0) + ((CONSTANTS["c2"] - C["c3"]) / C["cn"]) * f_m - (CONSTANTS["c2"] - C["c3"]) * delta_cm) return f_m
[docs]def get_nonlinear_site_term(C, ctx, y_ref): """ Returns the nonlinear site term and the Vs-scaling factor (to be used in the standard deviation model """ vs = ctx.vs30.clip(-np.inf, 1130.0) f_nl_scaling = C["phi2"] * (np.exp(C["phi3"] * (vs - 360.)) - np.exp(C["phi3"] * (1130. - 360.))) f_nl = np.log((y_ref + C["phi4"]) / C["phi4"]) * f_nl_scaling return f_nl, f_nl_scaling
[docs]def get_phi(C, mag, ctx, nl0): """ Returns the within-event variability described in equation 13, line 3 """ phi = C["sig3"] * np.ones(ctx.vs30.shape) phi[ctx.vs30measured] = 0.7 phi = np.sqrt(phi + ((1.0 + nl0) ** 2.)) mdep = C["sig1"] + ( C["sig2"] - C["sig1"]) * np.clip(mag - 5., 0., 1.5) / 1.5 return mdep * phi
[docs]def get_source_scaling_terms(C, ctx, delta_ztor, alpha_nm): """ Returns additional source scaling parameters related to style of faulting, dip and top of rupture depth """ f_src = np.zeros_like(ctx.mag) coshm = np.cosh(2.0 * np.clip(ctx.mag - 4.5, 0., None)) # Style of faulting term pos = (30 <= ctx.rake) & (ctx.rake <= 150) neg = (-120 <= ctx.rake) & (ctx.rake <= -60) # reverse faulting flag f_src[pos] += C["c1a"] + (C["c1c"] / coshm[pos]) # normal faulting flag f_src[neg] += (C["c1b"] + (C["c1d"] / coshm[neg])) * alpha_nm # Top of rupture term f_src += (C["c7"] + (C["c7b"] / coshm)) * delta_ztor # Dip term f_src += ((CONSTANTS["c11"] + (C["c11b"] / coshm)) * np.cos(np.radians(ctx.dip)) ** 2.0) return f_src
[docs]def get_stddevs(peer, C, ctx, mag, y_ref, f_nl_scaling): """ Returns the standard deviation model described in equation 13 """ if peer: # the standard deviation, which is fixed at 0.65 for every site return [0.65 * np.ones_like(ctx.vs30), 0, 0] # Determines the nonlinear term described in equation 13, line 4 nl0 = f_nl_scaling * (y_ref / (y_ref + C["phi4"])) # Get between and within-event variability tau = get_tau(C, mag) phi_nl0 = get_phi(C, mag, ctx, nl0) # Get total standard deviation propagating the uncertainty in the # nonlinear amplification term sigma = np.sqrt(((1.0 + nl0) ** 2.) * (tau ** 2.) + phi_nl0 ** 2.) return [sigma, np.abs((1 + nl0) * tau), phi_nl0]
[docs]def get_stress_scaling(C): """ Returns the stress drop scaling factor """ return C["c1"]
[docs]def get_tau(C, mag): """ Returns the between-event variability described in equation 13, line 2 """ # eq. 13 to calculate inter-event standard error mag_test = np.clip(mag - 5.0, 0., 1.5) return C['tau1'] + (C['tau2'] - C['tau1']) / 1.5 * mag_test
[docs]def get_mean_stddevs(region, C, ctx, imt, conf): """ Return mean and standard deviation values """ # Get ground motion on reference rock ln_y_ref = get_ln_y_ref(region, C, ctx, conf) y_ref = np.exp(ln_y_ref) f_z1pt0 = _get_basin_term(C, ctx, region) # Get linear amplification term f_lin = get_linear_site_term(region, C, ctx) # Get nonlinear amplification term f_nl, f_nl_scaling = get_nonlinear_site_term(C, ctx, y_ref) # Add on the site amplification mean = ln_y_ref + (f_lin + f_nl + f_z1pt0) # Get standard deviations sig, tau, phi = get_stddevs( conf['peer'], C, ctx, ctx.mag, y_ref, f_nl_scaling) return mean, sig, tau, phi
[docs]class ChiouYoungs2014(GMPE): """ Implements GMPE developed by Brian S.-J. Chiou and Robert R. Youngs. Chiou, B. S.-J. and Youngs, R. R. (2014), "Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra, 30(3), 1117 - 1153, DOI: 10.1193/072813EQS219M :param sigma_mu_epsilon: Epsilon for the statistical uncertainty term. :param use_hw: Bool which if true turns on the hanging-wall effect. :poram add_delta_c1: Long-period adjustment parameter as described in Boore et al. (2022) backbone paper. :param alpha_nm: Style-of-faulting correction for normal-faulting as described in Boore et al. (2022) backbone paper. This correction is magnitude independent. :param stress_par_host: Stress parameter for the host-region in bars. Used in Boore et al. (2022) backbone methodology. :param stress_par_target: Stress parameter for the target-region in bars. Used in Boore et al. (2022) backbone methodology. :param delta_gamma_tab: Filename containing path adjustments as described in Boore et al. (2022) backbone paper. """ adapted = False # Overridden in acme_2019 #: Supported tectonic region type is active shallow crust DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Supported intensity measure types are spectral acceleration, #: peak ground velocity and peak ground acceleration DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, SA} #: Supported intensity measure component is orientation-independent #: measure :attr:`~openquake.hazardlib.const.IMC.RotD50`, DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RotD50 #: Supported standard deviation types are inter-event, intra-event #: and total, see chapter "Variance model". DEFINED_FOR_STANDARD_DEVIATION_TYPES = { const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameters are Vs30, Vs30 measured flag #: and Z1.0. REQUIRES_SITES_PARAMETERS = {'vs30', 'vs30measured', 'z1pt0'} #: Required rupture parameters are magnitude, rake, #: dip and ztor. REQUIRES_RUPTURE_PARAMETERS = {'dip', 'rake', 'mag', 'ztor'} #: Required distance measures are RRup, Rjb and Rx. REQUIRES_DISTANCES = {'rrup', 'rjb', 'rx'} #: Reference shear wave velocity DEFINED_FOR_REFERENCE_VELOCITY = 1130 def __init__(self, region='CAL', sigma_mu_epsilon=0.0, use_hw=True, add_delta_c1=False, alpha_nm=1.0, stress_par_host=None, stress_par_target=None, delta_gamma_tab=None): # set region self.region = region # set sigma_mu_epsilon self.sigma_mu_epsilon = sigma_mu_epsilon # set the conf dictionary self.conf = {} self.conf['peer'] = self.__class__.__name__.endswith('PEER') self.conf['use_hw'] = use_hw self.conf['alpha_nm'] = alpha_nm self.conf['add_delta_c1'] = add_delta_c1 self.conf['stress_par_host'] = stress_par_host self.conf['stress_par_target'] = stress_par_target # The file with the `source function table` has a structure similar to # a traditional coefficient table. The columns in the `source function # table` are: # - IMT the intensity measure type (either PGA or SA) # - S1FS param # - S1RS param # - S2FS param # - S2RS param # - chi i.e. χFS2RS in equation 6 if stress_par_target is not None: cwd = pathlib.Path(__file__).parent.resolve() fname = os.path.join('chiou_youngs_2014', 'source_function_table.txt') fpath = os.path.join(cwd, fname) with open(fpath, encoding='utf8') as f: tmp = f.read() self.conf['source_function_table'] = CoeffsTable( sa_damping=5, table=tmp) # The file with the `path adjustment table` also has a structure which # is similar to traditional coefficient table. The columns in the `path # adjustment table` are: # - IMT the intensity measure type (either PGA or SA) # - c0 param # - c1 param # - c2 param # - c3 param if delta_gamma_tab is not None: with open(delta_gamma_tab, encoding='utf8') as f: tmp = f.read() self.conf['delta_gamma_tab'] = CoeffsTable(sa_damping=5, table=tmp)
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ # Reference to page 1144, PSA might need PGA value self.conf['imt'] = PGA() pga_mean, pga_sig, pga_tau, pga_phi = get_mean_stddevs( self.region, self.COEFFS[PGA()], ctx, PGA(), self.conf) # compute for m, imt in enumerate(imts): self.conf['imt'] = imt if repr(imt) == "PGA": mean[m] = pga_mean mean[m] += (self.sigma_mu_epsilon*get_epistemic_sigma(ctx)) sig[m], tau[m], phi[m] = pga_sig, pga_tau, pga_phi else: imt_mean, imt_sig, imt_tau, imt_phi = get_mean_stddevs( self.region, self.COEFFS[imt], ctx, imt, self.conf) # Reference to page 1144 # Predicted PSA value at T ≤ 0.3s should be set equal to the # value of PGA when it falls below the predicted PGA mean[m] = np.where(imt_mean < pga_mean, pga_mean, imt_mean) \ if repr(imt).startswith("SA") and imt.period <= 0.3 \ else imt_mean mean[m] += (self.sigma_mu_epsilon*get_epistemic_sigma(ctx)) sig[m], tau[m], phi[m] = imt_sig, imt_tau, imt_phi
#: Coefficient tables are constructed from values in tables 1 - 5 COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c1a c1b c1c c1d cn cm c2 c3 c4 c4a crb c5 chm c6 c7 c7b c8 c8a c8b c9 c9a c9b c11 c11b cg1 cg2 cg3 phi1 phi2 phi3 phi4 phi5 phi6 gjpit gwn phi1jp phi5jp phi6jp tau1 tau2 sig1 sig2 sig3 sig2jp pga -1.5065 0.165 -0.255 -0.165 0.255 16.0875 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.0956 0.4908 0.0352 0.0462 0. 0.2695 0.4833 0.9228 0.1202 6.8607 0. -0.4536 -0.007146 -0.006758 4.2542 -0.521 -0.1417 -0.00701 0.102151 0. 300 1.5817 0.7594 -0.6846 0.459 800. 0.4 0.26 0.4912 0.3762 0.8 0.4528 pgv 2.3549 0.165 -0.0626 -0.165 0.0626 3.3024 5.423 1.06 2.3152 -2.1 -0.5 50 5.8096 3.0514 0.4407 0.0324 0.0097 0.2154 0.2695 5. 0.3079 0.1 6.5 0 -0.3834 -0.001852 -0.007403 4.3439 -0.7936 -0.0699 -0.008444 5.41 0.0202 300. 2.2306 0.335 -0.7966 0.9488 800. 0.3894 0.2578 0.4785 0.3629 0.7504 0.3918 0.01 -1.5065 0.165 -0.255 -0.165 0.255 16.0875 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.0956 0.4908 0.0352 0.0462 0. 0.2695 0.4833 0.9228 0.1202 6.8607 0. -0.4536 -0.007146 -0.006758 4.2542 -0.521 -0.1417 -0.00701 0.102151 0. 300 1.5817 0.7594 -0.6846 0.459 800. 0.4 0.26 0.4912 0.3762 0.8 0.4528 0.02 -1.4798 0.165 -0.255 -0.165 0.255 15.7118 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.0963 0.4925 0.0352 0.0472 0. 0.2695 1.2144 0.9296 0.1217 6.8697 0. -0.4536 -0.007249 -0.006758 4.2386 -0.5055 -0.1364 -0.007279 0.10836 0. 300 1.574 0.7606 -0.6681 0.458 800. 0.4026 0.2637 0.4904 0.3762 0.8 0.4551 0.03 -1.2972 0.165 -0.255 -0.165 0.255 15.8819 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.0974 0.4992 0.0352 0.0533 0. 0.2695 1.6421 0.9396 0.1194 6.9113 0. -0.4536 -0.007869 -0.006758 4.2519 -0.4368 -0.1403 -0.007354 0.119888 0. 300 1.5544 0.7642 -0.6314 0.462 800. 0.4063 0.2689 0.4988 0.3849 0.8 0.4571 0.04 -1.1007 0.165 -0.255 -0.165 0.255 16.4556 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.0988 0.5037 0.0352 0.0596 0. 0.2695 1.9456 0.9661 0.1166 7.0271 0. -0.4536 -0.008316 -0.006758 4.296 -0.3752 -0.1591 -0.006977 0.133641 0. 300 1.5502 0.7676 -0.5855 0.453 800. 0.4095 0.2736 0.5049 0.391 0.8 0.4642 0.05 -0.9292 0.165 -0.255 -0.165 0.255 17.6453 4.9993 1.06 1.9636 -2.1 -0.5 50 6.4551 3.1011 0.5048 0.0352 0.0639 0. 0.2695 2.181 0.9794 0.1176 7.0959 0. -0.4536 -0.008743 -0.006758 4.3578 -0.3469 -0.1862 -0.006467 0.148927 0. 300 1.5391 0.7739 -0.5457 0.436 800. 0.4124 0.2777 0.5096 0.3957 0.8 0.4716 0.075 -0.658 0.165 -0.254 -0.165 0.254 20.1772 5.0031 1.06 1.9636 -2.1 -0.5 50 6.4551 3.1094 0.5048 0.0352 0.063 0. 0.2695 2.6087 1.026 0.1171 7.3298 0. -0.4536 -0.009537 -0.00619 4.5455 -0.3747 -0.2538 -0.005734 0.190596 0. 300 1.4804 0.7956 -0.4685 0.383 800. 0.4179 0.2855 0.5179 0.4043 0.8 0.5022 0.1 -0.5613 0.165 -0.253 -0.165 0.253 19.9992 5.0172 1.06 1.9636 -2.1 -0.5 50 6.8305 3.2381 0.5048 0.0352 0.0532 0. 0.2695 2.9122 1.0177 0.1146 7.2588 0. -0.4536 -0.00983 -0.005332 4.7603 -0.444 -0.2943 -0.005604 0.230662 0. 300 1.4094 0.7932 -0.4985 0.375 800. 0.4219 0.2913 0.5236 0.4104 0.8 0.523 0.12 -0.5342 0.165 -0.252 -0.165 0.252 18.7106 5.0315 1.06 1.9795 -2.1 -0.5 50 7.1333 3.3407 0.5048 0.0352 0.0452 0. 0.2695 3.1045 1.0008 0.1128 7.2372 0. -0.4536 -0.009913 -0.004732 4.8963 -0.4895 -0.3077 -0.005696 0.253169 0. 300 1.3682 0.7768 -0.5603 0.377 800. 0.4244 0.2949 0.527 0.4143 0.8 0.5278 0.15 -0.5462 0.165 -0.25 -0.165 0.25 16.6246 5.0547 1.06 2.0362 -2.1 -0.5 50 7.3621 3.43 0.5045 0.0352 0.0345 0. 0.2695 3.3399 0.9801 0.1106 7.2109 0. -0.4536 -0.009896 -0.003806 5.0644 -0.5477 -0.3113 -0.005845 0.266468 0. 300 1.3241 0.7437 -0.6451 0.379 800. 0.4275 0.2993 0.5308 0.4191 0.8 0.5304 0.17 -0.5858 0.165 -0.248 -0.165 0.248 15.3709 5.0704 1.06 2.0823 -2.1 -0.5 50 7.4365 3.4688 0.5036 0.0352 0.0283 0. 0.2695 3.4719 0.9652 0.115 7.2491 0. -0.4536 -0.009787 -0.00328 5.1371 -0.5922 -0.3062 -0.005959 0.26506 0. 300 1.3071 0.7219 -0.6981 0.38 800. 0.4292 0.3017 0.5328 0.4217 0.8 0.531 0.2 -0.6798 0.165 -0.2449 -0.165 0.2449 13.7012 5.0939 1.06 2.1521 -2.1 -0.5 50 7.4972 3.5146 0.5016 0.0352 0.0202 0. 0.2695 3.6434 0.9459 0.1208 7.2988 0. -0.444 -0.009505 -0.00269 5.188 -0.6693 -0.2927 -0.006141 0.255253 0. 300 1.2931 0.6922 -0.7653 0.384 800. 0.4313 0.3047 0.5351 0.4252 0.8 0.5312 0.25 -0.8663 0.165 -0.2382 -0.165 0.2382 11.2667 5.1315 1.06 2.2574 -2.1 -0.5 50 7.5416 3.5746 0.4971 0.0352 0.009 0. 0.2695 3.8787 0.9196 0.1208 7.3691 0. -0.3539 -0.008918 -0.002128 5.2164 -0.7766 -0.2662 -0.006439 0.231541 0. 300 1.315 0.6579 -0.8469 0.393 800. 0.4341 0.3087 0.5377 0.4299 0.7999 0.5309 0.3 -1.0514 0.165 -0.2313 -0.165 0.2313 9.1908 5.167 1.06 2.344 -2.1 -0.5 50 7.56 3.6232 0.4919 0.0352 -0.0004 0. 0.2695 4.0711 0.8829 0.1175 6.8789 0. -0.2688 -0.008251 -0.001812 5.1954 -0.8501 -0.2405 -0.006704 0.207277 0.001 300 1.3514 0.6362 -0.8999 0.408 800. 0.4363 0.3119 0.5395 0.4338 0.7997 0.5307 0.4 -1.3794 0.165 -0.2146 -0.165 0.2146 6.5459 5.2317 1.06 2.4709 -2.1 -0.5 50 7.5735 3.6945 0.4807 0.0352 -0.0155 0. 0.2695 4.3745 0.8302 0.106 6.5334 0. -0.1793 -0.007267 -0.001274 5.0899 -0.9431 -0.1975 -0.007125 0.165464 0.004 300 1.4051 0.6049 -0.9618 0.462 800. 0.4396 0.3165 0.5422 0.4399 0.7988 0.531 0.5 -1.6508 0.165 -0.1972 -0.165 0.1972 5.2305 5.2893 1.06 2.5567 -2.1 -0.5 50 7.5778 3.7401 0.4707 0.0352 -0.0278 0.0991 0.2695 4.6099 0.7884 0.1061 6.526 0. -0.1428 -0.006492 -0.001074 4.7854 -1.0044 -0.1633 -0.007435 0.133828 0.01 300 1.4402 0.5507 -0.9945 0.524 800. 0.4419 0.3199 0.5433 0.4446 0.7966 0.5313 0.75 -2.1511 0.165 -0.162 -0.165 0.162 3.7896 5.4109 1.06 2.6812 -2.1 -0.5 50 7.5808 3.7941 0.4575 0.0352 -0.0477 0.1982 0.2695 5.0376 0.6754 0.1 6.5 0. -0.1138 -0.005147 -0.001115 4.3304 -1.0602 -0.1028 -0.00812 0.085153 0.034 300 1.528 0.3582 -1.0225 0.658 800. 0.4459 0.3255 0.5294 0.4533 0.7792 0.5309 1 -2.5365 0.165 -0.14 -0.165 0.14 3.3024 5.5106 1.06 2.7474 -2.1 -0.5 50 7.5814 3.8144 0.4522 0.0352 -0.0559 0.2154 0.2695 5.3411 0.6196 0.1 6.5 0. -0.1062 -0.004277 -0.001197 4.1667 -1.0941 -0.0699 -0.008444 0.058595 0.067 300 1.6523 0.2003 -1.0002 0.78 800. 0.4484 0.3291 0.5105 0.4594 0.7504 0.5302 1.5 -3.0686 0.165 -0.1184 -0.165 0.1184 2.8498 5.6705 1.06 2.8161 -2.1 -0.5 50 7.5817 3.8284 0.4501 0.0352 -0.063 0.2154 0.2695 5.7688 0.5101 0.1 6.5 0. -0.102 -0.002979 -0.001675 4.0029 -1.1142 -0.0425 -0.007707 0.031787 0.143 300 1.8872 0.0356 -0.9245 0.96 800. 0.4515 0.3335 0.4783 0.468 0.7136 0.5276 2 -3.4148 0.1645 -0.11 -0.1645 0.11 2.5417 5.7981 1.06 2.8514 -2.1 -0.5 50 7.5818 3.833 0.45 0.0352 -0.0665 0.2154 0.2695 6.0723 0.3917 0.1 6.5 0. -0.1009 -0.002301 -0.002349 3.8949 -1.1154 -0.0302 -0.004792 0.019716 0.203 300 2.1348 0. -0.8626 1.11 800. 0.4534 0.3363 0.4681 0.4681 0.7035 0.5167 3 -3.9013 0.1168 -0.104 -0.1168 0.104 2.1488 5.9983 1.06 2.8875 -2.1 -0.5 50 7.5818 3.8361 0.45 0.016 -0.0516 0.2154 0.2695 6.5 0.1244 0.1 6.5 0. -0.1003 -0.001344 -0.003306 3.7928 -1.1081 -0.0129 -0.001828 0.009643 0.277 300 3.5752 0. -0.7882 1.291 800. 0.4558 0.3398 0.4617 0.4617 0.7006 0.4917 4 -4.2466 0.0732 -0.102 -0.0732 0.102 1.8957 6.1552 1.06 2.9058 -2.1 -0.5 50 7.5818 3.8369 0.45 0.0062 -0.0448 0.2154 0.2695 6.8035 0.0086 0.1 6.5 0. -0.1001 -0.001084 -0.003566 3.7443 -1.0603 -0.0016 -0.001523 0.005379 0.309 300 3.8646 0. -0.7195 1.387 800. 0.4574 0.3419 0.4571 0.4571 0.7001 0.4682 5 -4.5143 0.0484 -0.101 -0.0484 0.101 1.7228 6.2856 1.06 2.9169 -2.1 -0.5 50 7.5818 3.8376 0.45 0.0029 -0.0424 0.2154 0.2695 7.0389 0. 0.1 6.5 0. -0.1001 -0.00101 -0.00364 3.709 -0.9872 0. -0.00144 0.003223 0.321 300 3.7292 0. -0.656 1.433 800. 0.4584 0.3435 0.4535 0.4535 0.7 0.4517 7.5 -5.0009 0.022 -0.101 -0.022 0.101 1.5737 6.5428 1.06 2.932 -2.1 -0.5 50 7.5818 3.838 0.45 0.0007 -0.0348 0.2154 0.2695 7.4666 0. 0.1 6.5 0. -0.1 -0.000964 -0.003686 3.6632 -0.8274 0. -0.001369 0.001134 0.329 300 2.3763 0. -0.5202 1.46 800. 0.4601 0.3459 0.4471 0.4471 0.7 0.4167 10 -5.3461 0.0124 -0.1 -0.0124 0.1 1.5265 6.7415 1.06 2.9396 -2.1 -0.5 50 7.5818 3.838 0.45 0.0003 -0.0253 0.2154 0.2695 7.77 0. 0.1 6.5 0. -0.1 -0.00095 -0.0037 3.623 -0.7053 0. -0.001361 0.000515 0.33 300 1.7679 0. -0.4068 1.464 800. 0.4612 0.3474 0.4426 0.4426 0.7 0.3755 """)
# Regionalisation of the Chiou & Youngs (2014) GMPE for use with the # Japan far-field distance attuation scaling and site model add_alias('ChiouYoungs2014Japan', ChiouYoungs2014, region='JPN') # Adaption of the Chiou & Youngs (2014) GMPE for the the Italy far-field # attenuation scaling, but assuming the California site amplification model add_alias('ChiouYoungs2014Italy', ChiouYoungs2014, region='ITA') # Adaption of the Chiou & Youngs (2014) GMPE for the Wenchuan far-field # attenuation scaling, but assuming the California site amplification model. # It should be note that according to Chiou & Youngs (2014) this adjustment # is calibrated only for the M7.9 Wenchuan earthquake, so application to # other scenarios is at the user's own risk add_alias('ChiouYoungs2014Wenchuan', ChiouYoungs2014, region='WEN')
[docs]class ChiouYoungs2014PEER(ChiouYoungs2014): """ This implements the Chiou & Youngs (2014) GMPE for use with the PEER tests. In this version the total standard deviation is fixed at 0.65 """ #: Only the total standars deviation is defined DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL} #: The PEER tests requires only PGA DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA}
[docs]class ChiouYoungs2014NearFaultEffect(ChiouYoungs2014): """ This implements the Chiou & Youngs (2014) GMPE include the near fault effect prediction. In this version, we add the distance measure, rcdpp for directivity prediction. """ #: Required distance measures are RRup, Rjb, Rx, and Rcdpp REQUIRES_DISTANCES = {'rrup', 'rjb', 'rx', 'rcdpp'}
[docs]class ChiouYoungs2014ACME2019(ChiouYoungs2014): """ Implements a modified version of the CY2014 GMM. Main changes: - Hanging wall term excluded - Centered Ztor = 0 - Centered Dpp = 0 """ adapted = True
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ for m, imt in enumerate(imts): C = self.COEFFS[imt] # intensity on a reference soil is used for both mean # and stddev calculations. ln_y_ref = _get_ln_y_ref(self.region, ctx, C) # exp1 and exp2 are parts of eq. 12 and eq. 13, # calculate it once for both. exp1 = np.exp(C['phi3'] * (ctx.vs30.clip(-np.inf, 1130) - 360)) exp2 = np.exp(C['phi3'] * (1130 - 360)) mean[m] = _get_mean(ctx, C, ln_y_ref, exp1, exp2)