# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (c) 2016, GEM Foundation
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
from openquake.baselib.python3compat import zip
from openquake.hazardlib.stats import mean_quantiles
import numpy
F64 = numpy.float64
BYTES_PER_FLOAT = 8
[docs]class ProbabilityCurve(object):
"""
This class is a small wrapper over an array of PoEs associated to
a set of intensity measure types and levels. It provides a few operators,
including the complement operator `~`
~p = 1 - p
and the inclusive or operator `|`
p = p1 | p2 = ~(~p1 * ~p2)
Such operators are implemented efficiently at the numpy level, by
dispatching on the underlying array.
Here is an example of use:
>>> poe = ProbabilityCurve(numpy.array([0.1, 0.2, 0.3, 0, 0]))
>>> ~(poe | poe) * .5
<ProbabilityCurve
[ 0.405 0.32 0.245 0.5 0.5 ]>
"""
def __init__(self, array):
self.array = array
def __or__(self, other):
if other == 0:
return self
else:
return self.__class__(1. - (1. - self.array) * (1. - other.array))
__ror__ = __or__
def __mul__(self, other):
if isinstance(other, self.__class__):
return self.__class__(self.array * other.array)
elif other == 1:
return self
else:
return self.__class__(self.array * other)
__rmul__ = __mul__
def __invert__(self):
return self.__class__(1. - self.array)
def __nonzero__(self):
return bool(self.array.any())
def __repr__(self):
return '<ProbabilityCurve\n%s>' % self.array
# used when exporting to HDF5
[docs] def convert(self, imtls, idx=0):
"""
Convert a probability curve into a record of dtype `imtls.imt_dt`.
:param imtls: DictArray instance
:param idx: extract the data corresponding to the given inner index
"""
curve = numpy.zeros(1, imtls.imt_dt)
for imt in imtls:
curve[imt] = self.array[imtls.slicedic[imt], idx]
return curve[0]
[docs]class ProbabilityMap(dict):
"""
A dictionary site_id -> ProbabilityCurve. It defines the complement
operator `~`, performing the complement on each curve
~p = 1 - p
and the "inclusive or" operator `|`:
m = m1 | m2 = {sid: m1[sid] | m2[sid] for sid in all_sids}
Such operators are implemented efficiently at the numpy level, by
dispatching on the underlying array. Moreover there is a classmethod
.build(L, I, sids, initvalue) to build initialized instances of
:class:`ProbabilityMap`. The map can be represented as 3D array of shape
(shape_x, shape_y, shape_z) = (N, L, I), where N is the number of site IDs,
L the total number of hazard levels and I the number of GSIMs.
"""
@classmethod
[docs] def build(cls, shape_y, shape_z, sids, initvalue=0.):
"""
:param shape_y: the total number of intensity measure levels
:param shape_z: the number of inner levels
:param sids: a set of site indices
:param initvalue: the initial value of the probability (default 0)
:returns: a ProbabilityMap dictionary
"""
dic = cls(shape_y, shape_z)
for sid in sids:
dic.setdefault(sid, initvalue)
return dic
def __init__(self, shape_y, shape_z):
self.shape_y = shape_y
self.shape_z = shape_z
[docs] def setdefault(self, sid, value):
"""
Works like `dict.setdefault`: if the `sid` key is missing, it fills
it with an array and returns it.
:param sid: site ID
:param value: value used to fill the returned array
"""
try:
return self[sid]
except KeyError:
array = numpy.empty((self.shape_y, self.shape_z), F64)
array.fill(value)
pc = ProbabilityCurve(array)
self[sid] = pc
return pc
@property
def sids(self):
"""The ordered keys of the map as a numpy.uint32 array"""
return numpy.array(sorted(self), numpy.uint32)
@property
def array(self):
"""
The underlying array of shape (N, L, I)
"""
return numpy.array([self[sid].array for sid in sorted(self)])
@property
def nbytes(self):
"""The size of the underlying array"""
N, L, I = get_shape([self])
return BYTES_PER_FLOAT * N * L * I
# used when exporting to HDF5
[docs] def convert(self, imtls, nsites=None, idx=0):
"""
Convert a probability map into a composite array of length `nsites`
and dtype `imtls.imt_dt`.
:param imtls: DictArray instance
:param nsites: the total number of sites (or None)
:param idx: extract the data corresponding to the given inner index
"""
if nsites is None:
nsites = len(self)
curves = numpy.zeros(nsites, imtls.imt_dt)
for imt in curves.dtype.names:
curves_by_imt = curves[imt]
for sid in self:
curves_by_imt[sid] = self[sid].array[imtls.slicedic[imt], idx]
return curves
[docs] def filter(self, sids):
"""
Extracs a submap of self for the given sids.
"""
dic = self.__class__(self.shape_y, self.shape_z)
for sid in sids:
try:
dic[sid] = self[sid]
except KeyError:
pass
return dic
def __ior__(self, other):
self_sids = set(self)
other_sids = set(other)
for sid in self_sids & other_sids:
self[sid] = self[sid] | other[sid]
for sid in other_sids - self_sids:
self[sid] = other[sid]
return self
def __or__(self, other):
new = self.__class__(self.shape_y, self.shape_z)
new |= other
return new
__ror__ = __or__
def __mul__(self, other):
sids = set(self) | set(other)
new = self.__class__(self.shape_y, self.shape_z)
for sid in sids:
new[sid] = self.get(sid, 1) * other.get(sid, 1)
return new
def __invert__(self):
new = self.__class__(self.shape_y, self.shape_z)
for sid in self:
if (self[sid].array != 1.).any():
new[sid] = ~self[sid] # store only nonzero probabilities
return new
def __toh5__(self):
# converts to an array of shape (num_sids, shape_y, shape_z)
size = len(self)
sids = self.sids
shape = (size, self.shape_y, self.shape_z)
array = numpy.zeros(shape, F64)
for i, sid in numpy.ndenumerate(sids):
array[i] = self[sid].array
return array, dict(sids=sids)
def __fromh5__(self, array, attrs):
# rebuild the map from sids and probs arrays
self.shape_y = array.shape[1]
self.shape_z = array.shape[2]
for sid, prob in zip(attrs['sids'], array):
self[sid] = ProbabilityCurve(prob)
[docs]def get_shape(pmaps):
"""
:param pmaps: a set of homogenous ProbabilityMaps
:returns: the common shape (N, L, I)
"""
for pmap in pmaps:
if pmap:
sid = next(iter(pmap))
break
else:
raise ValueError('All probability maps where empty!')
return (len(pmap),) + pmap[sid].array.shape
[docs]class PmapStats(object):
"""
A class to perform statistics on ProbabilityMaps.
:param weights: a list of weights
:param quantiles: a list of floats in the range 0..1
Here is an example:
>>> pm1 = ProbabilityMap.build(3, 1, sids=[0, 1],
... initvalue=1.0)
>>> pm2 = ProbabilityMap.build(3, 1, sids=[0],
... initvalue=0.8)
>>> PmapStats(quantiles=[]).compute(sids=[0, 1], pmaps=[pm1, pm2])
[('mean', {0: <ProbabilityCurve
[[ 0.9]
[ 0.9]
[ 0.9]]>, 1: <ProbabilityCurve
[[ 0.5]
[ 0.5]
[ 0.5]]>})]
"""
def __init__(self, quantiles, weights=None):
self.quantiles = quantiles
self.weights = weights
# the tests are in the engine
[docs] def compute_pmap(self, sids, pmaps):
"""
:params sids: array of N site IDs
:param pmaps: array of R simple ProbabilityMaps
:returns: a ProbabilityMap with arrays of size (num_levels, num_stats)
"""
if len(pmaps) == 0:
raise ValueError('No probability maps!')
elif len(pmaps) == 1: # the mean is the only pmap
assert not self.quantiles, self.quantiles
return pmaps[0]
elif sum(len(pmap) for pmap in pmaps) == 0: # all empty pmaps
raise ValueError('All empty probability maps!')
N, L, I = get_shape(pmaps)
nstats = len(self.quantiles) + 1
stats = ProbabilityMap.build(L, nstats, sids)
curves_by_rlz = numpy.zeros((len(pmaps), len(sids), L), numpy.float64)
for i, pmap in enumerate(pmaps):
for j, sid in enumerate(sids):
if sid in pmap:
curves_by_rlz[i][j] = pmap[sid].array[:, 0]
mq = mean_quantiles(curves_by_rlz, self.quantiles, self.weights)
for i, array in enumerate(mq):
for j, sid in numpy.ndenumerate(sids):
stats[sid].array[:, i] = array[j]
return stats
[docs] def compute(self, sids, pmaps):
"""
:params sids:
array of N site IDs
:param pmaps:
array of R simple ProbabilityMaps
:returns:
a list of pairs [('mean', ...), ('quantile-XXX', ...), ...]
"""
stats = self.compute_pmap(sids, pmaps)
names = ['mean'] + ['quantile-%s' % q for q in self.quantiles]
return [(name, stats.extract(i)) for i, name in enumerate(names)]