Source code for openquake.calculators.classical_damage

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2018 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

import numpy

from openquake.baselib.general import AccumDict
from openquake.hazardlib import stats
from openquake.calculators import base, classical_risk


[docs]def classical_damage(riskinputs, riskmodel, param, monitor): """ Core function for a classical damage computation. :param riskinputs: :class:`openquake.risklib.riskinput.RiskInput` objects :param riskmodel: a :class:`openquake.risklib.riskinput.CompositeRiskModel` instance :param param: dictionary of extra parameters :param monitor: :class:`openquake.baselib.performance.Monitor` instance :returns: a nested dictionary lt_idx, rlz_idx -> asset_idx -> <damage array> """ result = AccumDict(accum=AccumDict()) for ri in riskinputs: for outputs in riskmodel.gen_outputs(ri, monitor): for l, out in enumerate(outputs): ordinals = [a.ordinal for a in outputs.assets] result[l, outputs.rlzi] += dict(zip(ordinals, out)) return result
[docs]@base.calculators.add('classical_damage') class ClassicalDamageCalculator(classical_risk.ClassicalRiskCalculator): """ Scenario damage calculator """ core_task = classical_damage accept_precalc = ['classical']
[docs] def post_execute(self, result): """ Export the result in CSV format. :param result: a dictionary (l, r) -> asset_ordinal -> fractions per damage state """ damages_dt = numpy.dtype([(ds, numpy.float32) for ds in self.riskmodel.damage_states]) damages = numpy.zeros((self.A, self.R, self.L * self.I), damages_dt) for l, r in result: for aid, fractions in result[l, r].items(): damages[aid, r, l] = tuple(fractions) stats.set_rlzs_stats(self.datastore, 'damages', damages)