openquake.hmtk.seismicity.occurrence package¶
Submodules¶
openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood module¶
- class openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood.AkiMaxLikelihood[source]¶
Bases:
openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence
- calculate(catalogue, config=None, completeness=None)[source]¶
Calculation of b-value and its uncertainty for a given catalogue, using the maximum likelihood method of Aki (1965), with a correction for discrete bin width (Bender, 1983).
- Parameters
catalogue – See
openquake.hmtk.seismicity.occurrence.base.py
for further explanationconfig – The configuration in this case do not contains specific information
completeness (float) – Completeness magnitude
- Return float bval
b-value of the Gutenberg-Richter relationship
- Return float sigma_b
Standard deviation of the GR b-value
openquake.hmtk.seismicity.occurrence.b_maximum_likelihood module¶
- class openquake.hmtk.seismicity.occurrence.b_maximum_likelihood.BMaxLikelihood[source]¶
Bases:
openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence
Implements maximum likelihood calculations taking into account time variation in completeness”
- calculate(catalogue, config, completeness=None)[source]¶
Calculates recurrence parameters a_value and b_value, and their respective uncertainties
- Parameters
catalogue – Earthquake Catalogue An instance of
openquake.hmtk.seismicity.catalogue
config (dict) – A configuration dictionary; the only parameter that can be defined in this case if the type of average to be applied in the calculation
completeness (list or numpy.ndarray) – Completeness table
openquake.hmtk.seismicity.occurrence.base module¶
- class openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence[source]¶
Bases:
object
Implements recurrence calculations for instrumental seismicity
- abstract calculate(catalogue, config, completeness=None)[source]¶
Implements recurrence calculation
- Parameters
catalogue – An instance of
openquake.hmtk.seismicity.catalogue
config (dict) – The config contains the necessary information to run a specific algorithm.
completeness (numpy.ndarray) – The completeness matrix
openquake.hmtk.seismicity.occurrence.kijko_smit module¶
- class openquake.hmtk.seismicity.occurrence.kijko_smit.KijkoSmit[source]¶
Bases:
openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence
Class to Implement the Kijko & Smit (2012) algorithm for estimation of a- and b-value
openquake.hmtk.seismicity.occurrence.penalized_mle module¶
- class openquake.hmtk.seismicity.occurrence.penalized_mle.PenalizedMLE[source]¶
Bases:
openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence
Test Implementation of the Penalized Maximum Likelihood function
- IERR = {1: 'No events in catalogue - returning prior', 2: 'Failure of convergence - returning prior'}¶
- calculate(catalogue, config, completeness)[source]¶
Calculates the b-value and rates (and their corresponding standard deviations) using the Penalized MLE approach
- Parameters
config (dict) – Configuration parameters
catalogue – Earthquake catalogue as instance of :class: openquake.hmtk.seismicity.catalogue.Catalogue
completeness – Completeness table
- Returns
b-value, standard deviation on b, rate (or a-value), standard deviation on a
openquake.hmtk.seismicity.occurrence.utils module¶
- openquake.hmtk.seismicity.occurrence.utils.generate_synthetic_magnitudes(aval, bval, mmin, mmax, nyears)[source]¶
Generates a synthetic catalogue for a specified number of years, with magnitudes distributed according to a truncated Gutenberg-Richter distribution
- Parameters
aval (float) – a-value
bval (float) – b-value
mmin (float) – Minimum Magnitude
mmax (float) – Maximum Magnitude
nyears (int) – Number of years
- Returns
Synthetic catalogue (dict) with year and magnitude attributes
- openquake.hmtk.seismicity.occurrence.utils.generate_trunc_gr_magnitudes(bval, mmin, mmax, nsamples)[source]¶
Generate a random list of magnitudes distributed according to a truncated Gutenberg-Richter model
- Parameters
bval (float) – b-value
mmin (float) – Minimum Magnitude
mmax (float) – Maximum Magnitude
nsamples (int) – Number of samples
- Returns
Vector of generated magnitudes
- openquake.hmtk.seismicity.occurrence.utils.get_completeness_counts(catalogue, completeness, d_m)[source]¶
Returns the number of earthquakes in a set of magnitude bins of specified with, along with the corresponding completeness duration (in years) of the bin
- Parameters
catalogue – Earthquake catalogue as instance of :class: openquake.hmtk.seisimicity.catalogue.Catalogue
completeness (numpy.ndarray) – Completeness table [year, magnitude]
d_m (float) – Bin size
- Returns
cent_mag - array indicating center of magnitude bins
t_per - array indicating total duration (in years) of completeness
n_obs - number of events in completeness period
- openquake.hmtk.seismicity.occurrence.utils.input_checks(catalogue, config, completeness)[source]¶
Performs a basic set of input checks on the data
- openquake.hmtk.seismicity.occurrence.utils.recurrence_table(mag, dmag, year, time_interval=None)[source]¶
Table of recurrence statistics for each magnitude [Magnitude, Number of Observations, Cumulative Number of Observations >= M, Number of Observations (normalised to annual value), Cumulative Number of Observations (normalised to annual value)] Counts number and cumulative number of occurrences of each magnitude in catalogue
- Parameters
mag (numpy.ndarray) – Catalog matrix magnitude column
dmag (numpy.ndarray) – Magnitude interval
year (numpy.ndarray) – Catalog matrix year column
- Returns numpy.ndarray recurrence table
Recurrence table
openquake.hmtk.seismicity.occurrence.weichert module¶
- class openquake.hmtk.seismicity.occurrence.weichert.Weichert[source]¶
Bases:
openquake.hmtk.seismicity.occurrence.base.SeismicityOccurrence
Class to Implement Weichert Algorithm
- weichert_algorithm(tper, fmag, nobs, mrate=0.0, bval=1.0, itstab=1e-05, maxiter=1000)[source]¶
Weichert algorithm
- Parameters
tper (numpy.ndarray (float)) – length of observation period corresponding to magnitude
fmag (numpy.ndarray (float)) – central magnitude
nobs (numpy.ndarray (int)) – number of events in magnitude increment
mrate (float) – reference magnitude
bval – initial value for b-value
itstab (float) – stabilisation tolerance
maxiter (Int) – Maximum number of iterations
- Returns
b-value, sigma_b, a-value, sigma_a
- Return type
float