Source code for openquake.hazardlib.gsim.campbell_bozorgnia_2014

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`CampbellBozorgnia2014`
               :class:`CampbellBozorgnia2014HighQ`
               :class:`CampbellBozorgnia2014LowQ`
               :class:`CampbellBozorgnia2014JapanSite`
               :class:`CampbellBozorgnia2014HighQJapanSite`
               :class:`CampbellBozorgnia2014LowQJapanSite`
"""
import numpy as np
from numpy import exp, radians, cos
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA

CONSTS = {"c8": 0.0,
          "h4": 1.0,
          "c": 1.88,
          "n": 1.18,
          "philnAF": 0.3}


def _get_alpha(C, vs30, pga_rock):
    """
    Returns the alpha, the linearised functional relationship between the
    site amplification and the PGA on rock. Equation 31.
    """
    alpha = np.zeros(len(pga_rock))
    idx = vs30 < C["k1"]
    if np.any(idx):
        af1 = pga_rock[idx] +\
            CONSTS["c"] * ((vs30[idx] / C["k1"]) ** CONSTS["n"])
        af2 = pga_rock[idx] + CONSTS["c"]
        alpha[idx] = C["k2"] * pga_rock[idx] * ((1.0 / af1) - (1.0 / af2))
    return alpha


def _get_anelastic_attenuation_term(C, rrup):
    """
    Returns the anelastic attenuation term defined in equation 25
    """
    f_atn = np.zeros(len(rrup))
    idx = rrup >= 80.0
    f_atn[idx] = (C["c20"] + C["Dc20"]) * (rrup[idx] - 80.0)
    return f_atn


def _get_basin_response_term(SJ, C, z2pt5):
    """
    Returns the basin response term defined in equation 20
    """
    f_sed = np.zeros(len(z2pt5))
    idx = z2pt5 < 1.0
    f_sed[idx] = (C["c14"] + C["c15"] * SJ) * (z2pt5[idx] - 1.0)
    idx = z2pt5 > 3.0
    f_sed[idx] = C["c16"] * C["k3"] * exp(-0.75) * (
        1. - np.exp(-0.25 * (z2pt5[idx] - 3.)))
    return f_sed


def _get_f1rx(C, r_x, r_1):
    """
    Defines the f1 scaling coefficient defined in equation 9
    """
    rxr1 = r_x / r_1
    return C["h1"] + C["h2"] * rxr1 + C["h3"] * rxr1 ** 2


def _get_f2rx(C, r_x, r_1, r_2):
    """
    Defines the f2 scaling coefficient defined in equation 10
    """
    drx = (r_x - r_1) / (r_2 - r_1)
    return CONSTS["h4"] + C["h5"] * drx + C["h6"] * drx ** 2


def _get_fault_dip_term(C, ctx):
    """
    Returns the fault dip term, defined in equation 24
    """
    res = C["c19"] * (5.5 - ctx.mag) * ctx.dip
    res[ctx.mag < 4.5] = C["c19"] * ctx.dip[ctx.mag < 4.5]
    res[ctx.mag > 5.5] = 0.0
    return res


def _get_geometric_attenuation_term(C, mag, rrup):
    """
    Returns the geometric attenuation term defined in equation 3
    """
    return (C["c5"] + C["c6"] * mag) * np.log(
        np.sqrt(rrup ** 2 + C["c7"] ** 2))


def _get_hanging_wall_coeffs_dip(dip):
    """
    Returns the hanging wall dip term defined in equation 16
    """
    return (90.0 - dip) / 45.0


def _get_hanging_wall_coeffs_mag(C, mag):
    """
    Returns the hanging wall magnitude term defined in equation 14
    """
    res = (mag - 5.5) * (1.0 + C["a2"] * (mag - 6.5))
    res[mag < 5.5] = 0.0
    res[mag > 6.5] = 1.0 + C["a2"] * (mag[mag > 6.5] - 6.5)
    return res


def _get_hanging_wall_coeffs_rrup(ctx):
    """
    Returns the hanging wall rrup term defined in equation 13
    """
    fhngrrup = np.ones(len(ctx.rrup))
    idx = ctx.rrup > 0.0
    fhngrrup[idx] = (ctx.rrup[idx] - ctx.rjb[idx]) / ctx.rrup[idx]
    return fhngrrup


def _get_hanging_wall_coeffs_rx(C, ctx):
    """
    Returns the hanging wall r-x caling term defined in equation 7 to 12
    """
    r_x = ctx.rx
    # Define coefficients R1 and R2
    r_1 = ctx.width * cos(radians(ctx.dip))
    r_2 = 62.0 * ctx.mag - 350.0
    fhngrx = np.zeros(len(r_x))
    # Case when 0 <= Rx <= R1
    idx = np.logical_and(r_x >= 0., r_x < r_1)
    fhngrx[idx] = _get_f1rx(C, r_x[idx], r_1[idx])
    # Case when Rx > R1
    idx = r_x >= r_1
    f2rx = _get_f2rx(C, r_x[idx], r_1[idx], r_2[idx])
    f2rx[f2rx < 0.0] = 0.0
    fhngrx[idx] = f2rx
    return fhngrx


def _get_hanging_wall_coeffs_ztor(ztor):
    """
    Returns the hanging wall ztor term defined in equation 15
    """
    res = 1. - 0.06 * ztor
    res[ztor > 16.66] = 0.
    return res


def _get_hanging_wall_term(C, ctx):
    """
    Returns the hanging wall scaling term defined in equations 7 to 16
    """
    return (C["c10"] *
            _get_hanging_wall_coeffs_rx(C, ctx) *
            _get_hanging_wall_coeffs_rrup(ctx) *
            _get_hanging_wall_coeffs_mag(C, ctx.mag) *
            _get_hanging_wall_coeffs_ztor(ctx.ztor) *
            _get_hanging_wall_coeffs_dip(ctx.dip))


def _get_hypocentral_depth_term(C, ctx):
    """
    Returns the hypocentral depth scaling term defined in equations 21 - 23
    """
    fhyp_h = np.clip(ctx.hypo_depth - 7.0, 0., 13.)
    fhyp_m = C["c17"] + (C["c18"] - C["c17"]) * (ctx.mag - 5.5)
    fhyp_m[ctx.mag <= 5.5] = C["c17"]
    fhyp_m[ctx.mag > 6.5] = C["c18"]
    return fhyp_h * fhyp_m


def _get_magnitude_term(C, mag):
    """
    Returns the magnitude scaling term defined in equation 2
    """
    f_mag = C["c0"] + C["c1"] * mag
    around5 = (mag > 4.5) & (mag <= 5.5)
    around6 = (mag > 5.5) & (mag <= 6.5)
    beyond = mag > 6.5
    f_mag[around5] += C["c2"] * (mag[around5] - 4.5)
    f_mag[around6] += (C["c2"] * (mag[around6] - 4.5) +
                       C["c3"] * (mag[around6] - 5.5))
    f_mag[beyond] += (C["c2"] * (mag[beyond] - 4.5) +
                      C["c3"] * (mag[beyond] - 5.5) +
                      C["c4"] * (mag[beyond] - 6.5))
    return f_mag


def _get_philny(C, mag):
    """
    Returns the intra-event random effects coefficient (phi)
    Equation 28.
    """
    res = C["phi2"] + (C["phi1"] - C["phi2"]) * (5.5 - mag)
    res[mag <= 4.5] = C["phi1"]
    res[mag >= 5.5] = C["phi2"]
    return res


def _get_shallow_site_response_term(SJ, C, vs30, pga_rock):
    """
    Returns the shallow site response term defined in equations 17, 18 and
    19
    """
    vs_mod = vs30 / C["k1"]
    # Get linear global site response term
    f_site_g = C["c11"] * np.log(vs_mod)
    idx = vs30 > C["k1"]
    f_site_g[idx] = f_site_g[idx] + (C["k2"] * CONSTS["n"] *
                                     np.log(vs_mod[idx]))

    # Get nonlinear site response term
    idx = np.logical_not(idx)
    if np.any(idx):
        f_site_g[idx] = f_site_g[idx] + C["k2"] * (
            np.log(pga_rock[idx] +
                   CONSTS["c"] * (vs_mod[idx] ** CONSTS["n"])) -
            np.log(pga_rock[idx] + CONSTS["c"]))

    # For Japan (SJ = 1) further scaling is needed (equation 19)
    if SJ:
        fsite_j = (C["c13"] + C["k2"] * CONSTS["n"]) * \
            np.log(vs_mod)
        # additional term activated for soft ctx (Vs30 <= 200m/s)
        # in Japan data
        idx = vs30 <= 200.0
        add_soft = (C["c12"] + C["k2"] * CONSTS["n"]) * \
            (np.log(vs_mod) - np.log(200.0 / C["k1"]))
        # combine terms
        fsite_j[idx] += add_soft[idx]

        return f_site_g + fsite_j
    else:
        return f_site_g


def _get_style_of_faulting_term(C, ctx):
    """
    Returns the style-of-faulting scaling term defined in equations 4 to 6
    """
    frv = np.zeros_like(ctx.rake)
    fnm = np.zeros_like(ctx.rake)
    frv[(ctx.rake > 30.) & (ctx.rake < 150.)] = 1.
    fnm[(ctx.rake > -150.) & (ctx.rake < -30.)] = 1.
    fflt_f = CONSTS["c8"] * frv + C["c9"] * fnm
    fflt_m = ctx.mag - 4.5
    fflt_m[ctx.mag <= 4.5] = 0.
    fflt_m[ctx.mag > 5.5] = 1.
    return fflt_f * fflt_m


def _get_taulny(C, mag):
    """
    Returns the inter-event random effects coefficient (tau)
    Equation 28.
    """
    res = C["tau2"] + (C["tau1"] - C["tau2"]) * (5.5 - mag)
    res[mag <= 4.5] = C["tau1"]
    res[mag >= 5.5] = C["tau2"]
    return res


def _select_basin_model(SJ, vs30):
    """
    Select the preferred basin model (California or Japan) to scale
    basin depth with respect to Vs30
    """
    if SJ:
        # Japan Basin Model - Equation 34 of Campbell & Bozorgnia (2014)
        return np.exp(5.359 - 1.102 * np.log(vs30))
    else:
        # California Basin Model - Equation 33 of
        # Campbell & Bozorgnia (2014)
        return np.exp(7.089 - 1.144 * np.log(vs30))


[docs]def get_mean_values(SJ, C, ctx, a1100=None): """ Returns the mean values for a specific IMT """ if isinstance(a1100, np.ndarray): # Site model defined temp_vs30 = ctx.vs30 temp_z2pt5 = ctx.z2pt5 else: # Default site and basin model temp_vs30 = 1100.0 * np.ones(len(ctx)) temp_z2pt5 = _select_basin_model(SJ, 1100.0) * \ np.ones_like(temp_vs30) return (_get_magnitude_term(C, ctx.mag) + _get_geometric_attenuation_term(C, ctx.mag, ctx.rrup) + _get_style_of_faulting_term(C, ctx) + _get_hanging_wall_term(C, ctx) + _get_shallow_site_response_term(SJ, C, temp_vs30, a1100) + _get_basin_response_term(SJ, C, temp_z2pt5) + _get_hypocentral_depth_term(C, ctx) + _get_fault_dip_term(C, ctx) + _get_anelastic_attenuation_term(C, ctx.rrup))
def _update_ctx(gsim, ctx): """ Use the ztor, width and hypo_depth formula to estimate if the estimate attribute is set. """ if gsim.estimate_ztor: # Equation 4 and 5 of Chiou & Youngs 2014 ctx.ztor = np.where( (ctx.rake > 30.) & (ctx.rake < 150.), np.maximum(2.704-1.226 * np.maximum(ctx.mag-5.849, 0), 0)**2, np.maximum(2.673-1.136 * np.maximum(ctx.mag-4.970, 0), 0)**2) if gsim.estimate_width: # width estimation requires Zbot # where Zbot is the depth to the bottom of the seismogenic crust if not hasattr(ctx, "zbot"): raise KeyError('Zbot is required if width is unknown.') # Equation 39 of Campbell & Bozorgnia 2014 mask = np.absolute(np.sin(np.radians(ctx.dip))) > 0 ctx.width = np.sqrt(10**((ctx.mag - 4.07) / 0.98)) ctx.width[mask] = np.minimum( ctx.width[mask], (ctx.zbot[mask] - ctx.ztor[mask]) / np.sin(np.radians(ctx.dip[mask]))) if gsim.estimate_hypo_depth: # Equation 36 of Campbell & Bozorgnia 2014 fdz_m = np.where( ctx.mag < 6.75, -4.317 + 0.984 * ctx.mag, 2.325) # Equation 37 of Campbell & Bozorgnia 2014 fdz_d = np.where( ctx.dip <= 40, 0.0445 * (ctx.dip - 40), 0) # The depth to the bottom of the rupture plane zbor = ctx.ztor + ctx.width * np.sin(np.radians(ctx.dip)) # Equation 35 of Campbell & Bozorgnia 2014 mask = zbor > ctx.ztor dz = np.zeros_like(ctx.ztor) dz[mask] = np.exp( np.minimum( fdz_m[mask] + fdz_d[mask], np.log(0.9 * (zbor[mask] - ctx.ztor[mask])))) ctx.hypo_depth = ctx.ztor + dz
[docs]class CampbellBozorgnia2014(GMPE): """ Implements NGA-West 2 GMPE developed by Kenneth W. Campbell and Yousef Bozorgnia, published as "NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5 % Damped Linear Acceleration Response Spectra" (2014, Earthquake Spectra, Volume 30, Number 3, pages 1087 - 1115). """ #: Supported tectonic region type is active shallow crust DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Supported intensity measure types are spectral acceleration, peak #: ground velocity and peak ground acceleration DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, SA} #: Supported intensity measure component is orientation-independent #: average horizontal :attr:`~openquake.hazardlib.const.IMC.GMRotI50` DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.RotD50 #: Supported standard deviation types are inter-event, intra-event #: and total, see section "Aleatory Variability Model", page 1094. DEFINED_FOR_STANDARD_DEVIATION_TYPES = { const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT} #: Required site parameters are Vs30, Vs30 type (measured or inferred), #: and depth (km) to the 2.5 km/s shear wave velocity layer (z2pt5) REQUIRES_SITES_PARAMETERS = {'vs30', 'z2pt5'} #: Required rupture parameters are magnitude, rake, dip, ztor, rupture #: width and hypocentral depth REQUIRES_RUPTURE_PARAMETERS = { 'mag', 'rake', 'dip', 'ztor', 'width', 'hypo_depth'} #: Required distance measures are Rrup, Rjb and Rx REQUIRES_DISTANCES = {'rrup', 'rjb', 'rx'} SJ = 0 # 1 for Japan def __init__(self, **kwargs): self.kwargs = kwargs self.estimate_ztor = int(kwargs.get('estimate_ztor', 0)) self.estimate_width = int(kwargs.get('estimate_width', 0)) self.estimate_hypo_depth = int(kwargs.get('estimate_hypo_depth', 0)) if self.estimate_width: # To estimate a width, the GMPE needs Zbot self.REQUIRES_RUPTURE_PARAMETERS |= {"zbot"}
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ if (self.estimate_ztor or self.estimate_width or self.estimate_hypo_depth): ctx = ctx.copy() _update_ctx(self, ctx) C_PGA = self.COEFFS[PGA()] # Get mean and standard deviation of PGA on rock (Vs30 1100 m/s^2) pga1100 = np.exp(get_mean_values(self.SJ, C_PGA, ctx)) for m, imt in enumerate(imts): C = self.COEFFS[imt] # Get mean and standard deviations for IMT mean[m] = get_mean_values(self.SJ, C, ctx, pga1100) if imt.string[:2] == "SA" and imt.period < 0.25: # According to Campbell & Bozorgnia (2013) [NGA West 2 Report] # If Sa (T) < PGA for T < 0.25 then set mean Sa(T) to mean PGA # Get PGA on soil pga = get_mean_values(self.SJ, C_PGA, ctx, pga1100) idx = mean[m] <= pga mean[m, idx] = pga[idx] # Get stddevs for PGA on basement rock tau_lnpga_b = _get_taulny(C_PGA, ctx.mag) phi_lnpga_b = np.sqrt(_get_philny(C_PGA, ctx.mag) ** 2. - CONSTS["philnAF"] ** 2.) # Get tau_lny on the basement rock tau_lnyb = _get_taulny(C, ctx.mag) # Get phi_lny on the basement rock phi_lnyb = np.sqrt(_get_philny(C, ctx.mag) ** 2. - CONSTS["philnAF"] ** 2.) # Get site scaling term alpha = _get_alpha(C, ctx.vs30, pga1100) # Evaluate tau according to equation 29 t = np.sqrt(tau_lnyb**2 + alpha**2 * tau_lnpga_b**2 + 2.0 * alpha * C["rholny"] * tau_lnyb * tau_lnpga_b) # Evaluate phi according to equation 30 p = np.sqrt( phi_lnyb**2 + CONSTS["philnAF"]**2 + alpha**2 * phi_lnpga_b**2 + 2.0 * alpha * C["rholny"] * phi_lnyb * phi_lnpga_b) sig[m] = np.sqrt(t**2 + p**2) tau[m] = t phi[m] = p
COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c0 c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 Dc20 a2 h1 h2 h3 h5 h6 k1 k2 k3 phi1 phi2 tau1 tau2 phiC rholny pgv -2.895 1.510 0.270 -1.299 -0.453 -2.466 0.204 5.837 -0.168 0.305 1.713 2.602 2.457 0.1060 0.332 0.585 0.0517 0.0327 0.00613 -0.0017 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.655 0.494 0.317 0.297 0.190 0.684 pga -4.416 0.984 0.537 -1.499 -0.496 -2.773 0.248 6.768 -0.212 0.720 1.090 2.186 1.420 -0.0064 -0.202 0.393 0.0977 0.0333 0.00757 -0.0055 0.0000 0.167 0.241 1.474 -0.715 -0.337 -0.270 865 -1.186 1.839 0.734 0.492 0.409 0.322 0.166 1.000 0.01 -4.365 0.977 0.533 -1.485 -0.499 -2.773 0.248 6.753 -0.214 0.720 1.094 2.191 1.416 -0.0070 -0.207 0.390 0.0981 0.0334 0.00755 -0.0055 0.0000 0.168 0.242 1.471 -0.714 -0.336 -0.270 865 -1.186 1.839 0.734 0.492 0.404 0.325 0.166 1.000 0.02 -4.348 0.976 0.549 -1.488 -0.501 -2.772 0.247 6.502 -0.208 0.730 1.149 2.189 1.453 -0.0167 -0.199 0.387 0.1009 0.0327 0.00759 -0.0055 0.0000 0.166 0.244 1.467 -0.711 -0.339 -0.263 865 -1.219 1.840 0.738 0.496 0.417 0.326 0.166 0.998 0.03 -4.024 0.931 0.628 -1.494 -0.517 -2.782 0.246 6.291 -0.213 0.759 1.290 2.164 1.476 -0.0422 -0.202 0.378 0.1095 0.0331 0.00790 -0.0057 0.0000 0.167 0.246 1.467 -0.713 -0.338 -0.259 908 -1.273 1.841 0.747 0.503 0.446 0.344 0.165 0.986 0.05 -3.479 0.887 0.674 -1.388 -0.615 -2.791 0.240 6.317 -0.244 0.826 1.449 2.138 1.549 -0.0663 -0.339 0.295 0.1226 0.0270 0.00803 -0.0063 0.0000 0.173 0.251 1.449 -0.701 -0.338 -0.263 1054 -1.346 1.843 0.777 0.520 0.508 0.377 0.162 0.938 0.075 -3.293 0.902 0.726 -1.469 -0.596 -2.745 0.227 6.861 -0.266 0.815 1.535 2.446 1.772 -0.0794 -0.404 0.322 0.1165 0.0288 0.00811 -0.0070 0.0000 0.198 0.260 1.435 -0.695 -0.347 -0.219 1086 -1.471 1.845 0.782 0.535 0.504 0.418 0.158 0.887 0.10 -3.666 0.993 0.698 -1.572 -0.536 -2.633 0.210 7.294 -0.229 0.831 1.615 2.969 1.916 -0.0294 -0.416 0.384 0.0998 0.0325 0.00744 -0.0073 0.0000 0.174 0.259 1.449 -0.708 -0.391 -0.201 1032 -1.624 1.847 0.769 0.543 0.445 0.426 0.170 0.870 0.15 -4.866 1.267 0.510 -1.669 -0.490 -2.458 0.183 8.031 -0.211 0.749 1.877 3.544 2.161 0.0642 -0.407 0.417 0.0760 0.0388 0.00716 -0.0069 0.0000 0.198 0.254 1.461 -0.715 -0.449 -0.099 878 -1.931 1.852 0.769 0.543 0.382 0.387 0.180 0.876 0.20 -5.411 1.366 0.447 -1.750 -0.451 -2.421 0.182 8.385 -0.163 0.764 2.069 3.707 2.465 0.0968 -0.311 0.404 0.0571 0.0437 0.00688 -0.0060 0.0000 0.204 0.237 1.484 -0.721 -0.393 -0.198 748 -2.188 1.856 0.761 0.552 0.339 0.338 0.186 0.870 0.25 -5.962 1.458 0.274 -1.711 -0.404 -2.392 0.189 7.534 -0.150 0.716 2.205 3.343 2.766 0.1441 -0.172 0.466 0.0437 0.0463 0.00556 -0.0055 0.0000 0.185 0.206 1.581 -0.787 -0.339 -0.210 654 -2.381 1.861 0.744 0.545 0.340 0.316 0.191 0.850 0.30 -6.403 1.528 0.193 -1.770 -0.321 -2.376 0.195 6.990 -0.131 0.737 2.306 3.334 3.011 0.1597 -0.084 0.528 0.0323 0.0508 0.00458 -0.0049 0.0000 0.164 0.210 1.586 -0.795 -0.447 -0.121 587 -2.518 1.865 0.727 0.568 0.340 0.300 0.198 0.819 0.40 -7.566 1.739 -0.020 -1.594 -0.426 -2.303 0.185 7.012 -0.159 0.738 2.398 3.544 3.203 0.1410 0.085 0.540 0.0209 0.0432 0.00401 -0.0037 0.0000 0.160 0.226 1.544 -0.770 -0.525 -0.086 503 -2.657 1.874 0.690 0.593 0.356 0.264 0.206 0.743 0.50 -8.379 1.872 -0.121 -1.577 -0.440 -2.296 0.186 6.902 -0.153 0.718 2.355 3.016 3.333 0.1474 0.233 0.638 0.0092 0.0405 0.00388 -0.0027 0.0000 0.184 0.217 1.554 -0.770 -0.407 -0.281 457 -2.669 1.883 0.663 0.611 0.379 0.263 0.208 0.684 0.75 -9.841 2.021 -0.042 -1.757 -0.443 -2.232 0.186 5.522 -0.090 0.795 1.995 2.616 3.054 0.1764 0.411 0.776 -0.0082 0.0420 0.00420 -0.0016 0.0000 0.216 0.154 1.626 -0.780 -0.371 -0.285 410 -2.401 1.906 0.606 0.633 0.430 0.326 0.221 0.562 1.00 -11.011 2.180 -0.069 -1.707 -0.527 -2.158 0.169 5.650 -0.105 0.556 1.447 2.470 2.562 0.2593 0.479 0.771 -0.0131 0.0426 0.00409 -0.0006 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.579 0.628 0.470 0.353 0.225 0.467 1.50 -12.469 2.270 0.047 -1.621 -0.630 -2.063 0.158 5.795 -0.058 0.480 0.330 2.108 1.453 0.2881 0.566 0.748 -0.0187 0.0380 0.00424 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.025 1.974 0.541 0.603 0.497 0.399 0.222 0.364 2.00 -12.969 2.271 0.149 -1.512 -0.768 -2.104 0.158 6.632 -0.028 0.401 -0.514 1.327 0.657 0.3112 0.562 0.763 -0.0258 0.0252 0.00448 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -0.299 2.019 0.529 0.588 0.499 0.400 0.226 0.298 3.00 -13.306 2.150 0.368 -1.315 -0.890 -2.051 0.148 6.759 0.000 0.206 -0.848 0.601 0.367 0.3478 0.534 0.686 -0.0311 0.0236 0.00345 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.110 0.527 0.578 0.500 0.417 0.229 0.234 4.00 -14.020 2.132 0.726 -1.506 -0.885 -1.986 0.135 7.978 0.000 0.105 -0.793 0.568 0.306 0.3747 0.522 0.691 -0.0413 0.0102 0.00603 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.200 0.521 0.559 0.543 0.393 0.237 0.202 5.00 -14.558 2.116 1.027 -1.721 -0.878 -2.021 0.135 8.538 0.000 0.000 -0.748 0.356 0.268 0.3382 0.477 0.670 -0.0281 0.0034 0.00805 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.291 0.502 0.551 0.534 0.421 0.237 0.184 7.50 -15.509 2.223 0.169 -0.756 -1.077 -2.179 0.165 8.468 0.000 0.000 -0.664 0.075 0.374 0.3754 0.321 0.757 -0.0205 0.0050 0.00280 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.517 0.457 0.546 0.523 0.438 0.271 0.176 10.0 -15.975 2.132 0.367 -0.800 -1.282 -2.244 0.180 6.564 0.000 0.000 -0.576 -0.027 0.297 0.3506 0.174 0.621 0.0009 0.0099 0.00458 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.744 0.441 0.543 0.466 0.438 0.290 0.154 """)
[docs]class CampbellBozorgnia2014HighQ(CampbellBozorgnia2014): """ Implements the Campbell & Bozorgnia (2014) NGA-West2 GMPE for regions with low attenuation (high quality factor, Q) (i.e. China, Turkey) """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c0 c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 Dc20 a2 h1 h2 h3 h5 h6 k1 k2 k3 phi1 phi2 tau1 tau2 phiC rholny pgv -2.895 1.510 0.270 -1.299 -0.453 -2.466 0.204 5.837 -0.168 0.305 1.713 2.602 2.457 0.1060 0.332 0.585 0.0517 0.0327 0.00613 -0.0017 0.0017 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.655 0.494 0.317 0.297 0.190 0.684 pga -4.416 0.984 0.537 -1.499 -0.496 -2.773 0.248 6.768 -0.212 0.720 1.090 2.186 1.420 -0.0064 -0.202 0.393 0.0977 0.0333 0.00757 -0.0055 0.0036 0.167 0.241 1.474 -0.715 -0.337 -0.270 865 -1.186 1.839 0.734 0.492 0.409 0.322 0.166 1.000 0.01 -4.365 0.977 0.533 -1.485 -0.499 -2.773 0.248 6.753 -0.214 0.720 1.094 2.191 1.416 -0.0070 -0.207 0.390 0.0981 0.0334 0.00755 -0.0055 0.0036 0.168 0.242 1.471 -0.714 -0.336 -0.270 865 -1.186 1.839 0.734 0.492 0.404 0.325 0.166 1.000 0.02 -4.348 0.976 0.549 -1.488 -0.501 -2.772 0.247 6.502 -0.208 0.730 1.149 2.189 1.453 -0.0167 -0.199 0.387 0.1009 0.0327 0.00759 -0.0055 0.0036 0.166 0.244 1.467 -0.711 -0.339 -0.263 865 -1.219 1.840 0.738 0.496 0.417 0.326 0.166 0.998 0.03 -4.024 0.931 0.628 -1.494 -0.517 -2.782 0.246 6.291 -0.213 0.759 1.290 2.164 1.476 -0.0422 -0.202 0.378 0.1095 0.0331 0.00790 -0.0057 0.0037 0.167 0.246 1.467 -0.713 -0.338 -0.259 908 -1.273 1.841 0.747 0.503 0.446 0.344 0.165 0.986 0.05 -3.479 0.887 0.674 -1.388 -0.615 -2.791 0.240 6.317 -0.244 0.826 1.449 2.138 1.549 -0.0663 -0.339 0.295 0.1226 0.0270 0.00803 -0.0063 0.0040 0.173 0.251 1.449 -0.701 -0.338 -0.263 1054 -1.346 1.843 0.777 0.520 0.508 0.377 0.162 0.938 0.075 -3.293 0.902 0.726 -1.469 -0.596 -2.745 0.227 6.861 -0.266 0.815 1.535 2.446 1.772 -0.0794 -0.404 0.322 0.1165 0.0288 0.00811 -0.0070 0.0039 0.198 0.260 1.435 -0.695 -0.347 -0.219 1086 -1.471 1.845 0.782 0.535 0.504 0.418 0.158 0.887 0.10 -3.666 0.993 0.698 -1.572 -0.536 -2.633 0.210 7.294 -0.229 0.831 1.615 2.969 1.916 -0.0294 -0.416 0.384 0.0998 0.0325 0.00744 -0.0073 0.0042 0.174 0.259 1.449 -0.708 -0.391 -0.201 1032 -1.624 1.847 0.769 0.543 0.445 0.426 0.170 0.870 0.15 -4.866 1.267 0.510 -1.669 -0.490 -2.458 0.183 8.031 -0.211 0.749 1.877 3.544 2.161 0.0642 -0.407 0.417 0.0760 0.0388 0.00716 -0.0069 0.0042 0.198 0.254 1.461 -0.715 -0.449 -0.099 878 -1.931 1.852 0.769 0.543 0.382 0.387 0.180 0.876 0.20 -5.411 1.366 0.447 -1.750 -0.451 -2.421 0.182 8.385 -0.163 0.764 2.069 3.707 2.465 0.0968 -0.311 0.404 0.0571 0.0437 0.00688 -0.0060 0.0041 0.204 0.237 1.484 -0.721 -0.393 -0.198 748 -2.188 1.856 0.761 0.552 0.339 0.338 0.186 0.870 0.25 -5.962 1.458 0.274 -1.711 -0.404 -2.392 0.189 7.534 -0.150 0.716 2.205 3.343 2.766 0.1441 -0.172 0.466 0.0437 0.0463 0.00556 -0.0055 0.0036 0.185 0.206 1.581 -0.787 -0.339 -0.210 654 -2.381 1.861 0.744 0.545 0.340 0.316 0.191 0.850 0.30 -6.403 1.528 0.193 -1.770 -0.321 -2.376 0.195 6.990 -0.131 0.737 2.306 3.334 3.011 0.1597 -0.084 0.528 0.0323 0.0508 0.00458 -0.0049 0.0031 0.164 0.210 1.586 -0.795 -0.447 -0.121 587 -2.518 1.865 0.727 0.568 0.340 0.300 0.198 0.819 0.40 -7.566 1.739 -0.020 -1.594 -0.426 -2.303 0.185 7.012 -0.159 0.738 2.398 3.544 3.203 0.1410 0.085 0.540 0.0209 0.0432 0.00401 -0.0037 0.0028 0.160 0.226 1.544 -0.770 -0.525 -0.086 503 -2.657 1.874 0.690 0.593 0.356 0.264 0.206 0.743 0.50 -8.379 1.872 -0.121 -1.577 -0.440 -2.296 0.186 6.902 -0.153 0.718 2.355 3.016 3.333 0.1474 0.233 0.638 0.0092 0.0405 0.00388 -0.0027 0.0025 0.184 0.217 1.554 -0.770 -0.407 -0.281 457 -2.669 1.883 0.663 0.611 0.379 0.263 0.208 0.684 0.75 -9.841 2.021 -0.042 -1.757 -0.443 -2.232 0.186 5.522 -0.090 0.795 1.995 2.616 3.054 0.1764 0.411 0.776 -0.0082 0.0420 0.00420 -0.0016 0.0016 0.216 0.154 1.626 -0.780 -0.371 -0.285 410 -2.401 1.906 0.606 0.633 0.430 0.326 0.221 0.562 1.00 -11.011 2.180 -0.069 -1.707 -0.527 -2.158 0.169 5.650 -0.105 0.556 1.447 2.470 2.562 0.2593 0.479 0.771 -0.0131 0.0426 0.00409 -0.0006 0.0006 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.579 0.628 0.470 0.353 0.225 0.467 1.50 -12.469 2.270 0.047 -1.621 -0.630 -2.063 0.158 5.795 -0.058 0.480 0.330 2.108 1.453 0.2881 0.566 0.748 -0.0187 0.0380 0.00424 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.025 1.974 0.541 0.603 0.497 0.399 0.222 0.364 2.00 -12.969 2.271 0.149 -1.512 -0.768 -2.104 0.158 6.632 -0.028 0.401 -0.514 1.327 0.657 0.3112 0.562 0.763 -0.0258 0.0252 0.00448 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -0.299 2.019 0.529 0.588 0.499 0.400 0.226 0.298 3.00 -13.306 2.150 0.368 -1.315 -0.890 -2.051 0.148 6.759 0.000 0.206 -0.848 0.601 0.367 0.3478 0.534 0.686 -0.0311 0.0236 0.00345 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.110 0.527 0.578 0.500 0.417 0.229 0.234 4.00 -14.020 2.132 0.726 -1.506 -0.885 -1.986 0.135 7.978 0.000 0.105 -0.793 0.568 0.306 0.3747 0.522 0.691 -0.0413 0.0102 0.00603 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.200 0.521 0.559 0.543 0.393 0.237 0.202 5.00 -14.558 2.116 1.027 -1.721 -0.878 -2.021 0.135 8.538 0.000 0.000 -0.748 0.356 0.268 0.3382 0.477 0.670 -0.0281 0.0034 0.00805 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.291 0.502 0.551 0.534 0.421 0.237 0.184 7.50 -15.509 2.223 0.169 -0.756 -1.077 -2.179 0.165 8.468 0.000 0.000 -0.664 0.075 0.374 0.3754 0.321 0.757 -0.0205 0.0050 0.00280 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.517 0.457 0.546 0.523 0.438 0.271 0.176 10.0 -15.975 2.132 0.367 -0.800 -1.282 -2.244 0.180 6.564 0.000 0.000 -0.576 -0.027 0.297 0.3506 0.174 0.621 0.0009 0.0099 0.00458 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.744 0.441 0.543 0.466 0.438 0.290 0.154 """)
[docs]class CampbellBozorgnia2014LowQ(CampbellBozorgnia2014): """ Implements the Campbell & Bozorgnia (2014) NGA-West2 GMPE for regions with high attenuation (low quality factor, Q) (i.e. Japan, Italy) """ COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c0 c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 Dc20 a2 h1 h2 h3 h5 h6 k1 k2 k3 phi1 phi2 tau1 tau2 phiC rholny pgv -2.895 1.510 0.270 -1.299 -0.453 -2.466 0.204 5.837 -0.168 0.305 1.713 2.602 2.457 0.1060 0.332 0.585 0.0517 0.0327 0.00613 -0.0017 -0.0006 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.655 0.494 0.317 0.297 0.190 0.684 pga -4.416 0.984 0.537 -1.499 -0.496 -2.773 0.248 6.768 -0.212 0.720 1.090 2.186 1.420 -0.0064 -0.202 0.393 0.0977 0.0333 0.00757 -0.0055 -0.0035 0.167 0.241 1.474 -0.715 -0.337 -0.270 865 -1.186 1.839 0.734 0.492 0.409 0.322 0.166 1.000 0.01 -4.365 0.977 0.533 -1.485 -0.499 -2.773 0.248 6.753 -0.214 0.720 1.094 2.191 1.416 -0.0070 -0.207 0.390 0.0981 0.0334 0.00755 -0.0055 -0.0035 0.168 0.242 1.471 -0.714 -0.336 -0.270 865 -1.186 1.839 0.734 0.492 0.404 0.325 0.166 1.000 0.02 -4.348 0.976 0.549 -1.488 -0.501 -2.772 0.247 6.502 -0.208 0.730 1.149 2.189 1.453 -0.0167 -0.199 0.387 0.1009 0.0327 0.00759 -0.0055 -0.0035 0.166 0.244 1.467 -0.711 -0.339 -0.263 865 -1.219 1.840 0.738 0.496 0.417 0.326 0.166 0.998 0.03 -4.024 0.931 0.628 -1.494 -0.517 -2.782 0.246 6.291 -0.213 0.759 1.290 2.164 1.476 -0.0422 -0.202 0.378 0.1095 0.0331 0.00790 -0.0057 -0.0034 0.167 0.246 1.467 -0.713 -0.338 -0.259 908 -1.273 1.841 0.747 0.503 0.446 0.344 0.165 0.986 0.05 -3.479 0.887 0.674 -1.388 -0.615 -2.791 0.240 6.317 -0.244 0.826 1.449 2.138 1.549 -0.0663 -0.339 0.295 0.1226 0.0270 0.00803 -0.0063 -0.0037 0.173 0.251 1.449 -0.701 -0.338 -0.263 1054 -1.346 1.843 0.777 0.520 0.508 0.377 0.162 0.938 0.075 -3.293 0.902 0.726 -1.469 -0.596 -2.745 0.227 6.861 -0.266 0.815 1.535 2.446 1.772 -0.0794 -0.404 0.322 0.1165 0.0288 0.00811 -0.0070 -0.0037 0.198 0.260 1.435 -0.695 -0.347 -0.219 1086 -1.471 1.845 0.782 0.535 0.504 0.418 0.158 0.887 0.10 -3.666 0.993 0.698 -1.572 -0.536 -2.633 0.210 7.294 -0.229 0.831 1.615 2.969 1.916 -0.0294 -0.416 0.384 0.0998 0.0325 0.00744 -0.0073 -0.0034 0.174 0.259 1.449 -0.708 -0.391 -0.201 1032 -1.624 1.847 0.769 0.543 0.445 0.426 0.170 0.870 0.15 -4.866 1.267 0.510 -1.669 -0.490 -2.458 0.183 8.031 -0.211 0.749 1.877 3.544 2.161 0.0642 -0.407 0.417 0.0760 0.0388 0.00716 -0.0069 -0.0030 0.198 0.254 1.461 -0.715 -0.449 -0.099 878 -1.931 1.852 0.769 0.543 0.382 0.387 0.180 0.876 0.20 -5.411 1.366 0.447 -1.750 -0.451 -2.421 0.182 8.385 -0.163 0.764 2.069 3.707 2.465 0.0968 -0.311 0.404 0.0571 0.0437 0.00688 -0.0060 -0.0031 0.204 0.237 1.484 -0.721 -0.393 -0.198 748 -2.188 1.856 0.761 0.552 0.339 0.338 0.186 0.870 0.25 -5.962 1.458 0.274 -1.711 -0.404 -2.392 0.189 7.534 -0.150 0.716 2.205 3.343 2.766 0.1441 -0.172 0.466 0.0437 0.0463 0.00556 -0.0055 -0.0033 0.185 0.206 1.581 -0.787 -0.339 -0.210 654 -2.381 1.861 0.744 0.545 0.340 0.316 0.191 0.850 0.30 -6.403 1.528 0.193 -1.770 -0.321 -2.376 0.195 6.990 -0.131 0.737 2.306 3.334 3.011 0.1597 -0.084 0.528 0.0323 0.0508 0.00458 -0.0049 -0.0035 0.164 0.210 1.586 -0.795 -0.447 -0.121 587 -2.518 1.865 0.727 0.568 0.340 0.300 0.198 0.819 0.40 -7.566 1.739 -0.020 -1.594 -0.426 -2.303 0.185 7.012 -0.159 0.738 2.398 3.544 3.203 0.1410 0.085 0.540 0.0209 0.0432 0.00401 -0.0037 -0.0034 0.160 0.226 1.544 -0.770 -0.525 -0.086 503 -2.657 1.874 0.690 0.593 0.356 0.264 0.206 0.743 0.50 -8.379 1.872 -0.121 -1.577 -0.440 -2.296 0.186 6.902 -0.153 0.718 2.355 3.016 3.333 0.1474 0.233 0.638 0.0092 0.0405 0.00388 -0.0027 -0.0034 0.184 0.217 1.554 -0.770 -0.407 -0.281 457 -2.669 1.883 0.663 0.611 0.379 0.263 0.208 0.684 0.75 -9.841 2.021 -0.042 -1.757 -0.443 -2.232 0.186 5.522 -0.090 0.795 1.995 2.616 3.054 0.1764 0.411 0.776 -0.0082 0.0420 0.00420 -0.0016 -0.0032 0.216 0.154 1.626 -0.780 -0.371 -0.285 410 -2.401 1.906 0.606 0.633 0.430 0.326 0.221 0.562 1.00 -11.011 2.180 -0.069 -1.707 -0.527 -2.158 0.169 5.650 -0.105 0.556 1.447 2.470 2.562 0.2593 0.479 0.771 -0.0131 0.0426 0.00409 -0.0006 -0.0030 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.955 1.929 0.579 0.628 0.470 0.353 0.225 0.467 1.50 -12.469 2.270 0.047 -1.621 -0.630 -2.063 0.158 5.795 -0.058 0.480 0.330 2.108 1.453 0.2881 0.566 0.748 -0.0187 0.0380 0.00424 0.0000 -0.0019 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -1.025 1.974 0.541 0.603 0.497 0.399 0.222 0.364 2.00 -12.969 2.271 0.149 -1.512 -0.768 -2.104 0.158 6.632 -0.028 0.401 -0.514 1.327 0.657 0.3112 0.562 0.763 -0.0258 0.0252 0.00448 0.0000 -0.0005 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 -0.299 2.019 0.529 0.588 0.499 0.400 0.226 0.298 3.00 -13.306 2.150 0.368 -1.315 -0.890 -2.051 0.148 6.759 0.000 0.206 -0.848 0.601 0.367 0.3478 0.534 0.686 -0.0311 0.0236 0.00345 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.110 0.527 0.578 0.500 0.417 0.229 0.234 4.00 -14.020 2.132 0.726 -1.506 -0.885 -1.986 0.135 7.978 0.000 0.105 -0.793 0.568 0.306 0.3747 0.522 0.691 -0.0413 0.0102 0.00603 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.200 0.521 0.559 0.543 0.393 0.237 0.202 5.00 -14.558 2.116 1.027 -1.721 -0.878 -2.021 0.135 8.538 0.000 0.000 -0.748 0.356 0.268 0.3382 0.477 0.670 -0.0281 0.0034 0.00805 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.291 0.502 0.551 0.534 0.421 0.237 0.184 7.50 -15.509 2.223 0.169 -0.756 -1.077 -2.179 0.165 8.468 0.000 0.000 -0.664 0.075 0.374 0.3754 0.321 0.757 -0.0205 0.0050 0.00280 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.517 0.457 0.546 0.523 0.438 0.271 0.176 10.0 -15.975 2.132 0.367 -0.800 -1.282 -2.244 0.180 6.564 0.000 0.000 -0.576 -0.027 0.297 0.3506 0.174 0.621 0.0009 0.0099 0.00458 0.0000 0.0000 0.596 0.117 1.616 -0.733 -0.128 -0.756 400 0.000 2.744 0.441 0.543 0.466 0.438 0.290 0.154 """)
[docs]class CampbellBozorgnia2014JapanSite(CampbellBozorgnia2014): """ Implements the Campbell & Bozorgnia (2014) NGA-West2 GMPE for the case in which the "Japan" shallow site response term is activited """ SJ = 1
[docs]class CampbellBozorgnia2014HighQJapanSite(CampbellBozorgnia2014HighQ): """ Implements the Campbell & Bozorgnia (2014) NGA-West2 GMPE, for the low attenuation (high quality factor) coefficients, for the case in which the "Japan" shallow site response term is activited """ SJ = 1
[docs]class CampbellBozorgnia2014LowQJapanSite(CampbellBozorgnia2014LowQ): """ Implements the Campbell & Bozorgnia (2014) NGA-West2 GMPE, for the high attenuation (low quality factor) coefficients, for the case in which the "Japan" shallow site response term is activited """ SJ = 1