# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2013-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`BahrampouriEtAldm2021`
:class:`BahrampouriEtAldm2021ASC`
:class:`BahrampouriEtAldm2021SSlab`
:class:`BahrampouriEtAldm2021SInter`
"""
import numpy as np
from openquake.hazardlib.gsim.base import CoeffsTable, GMPE
from openquake.hazardlib import const
from openquake.hazardlib.imt import RSD595, RSD575
def _get_source_term(trt, C, ctx):
"""
Compute the source term described in Eq. 8:
`` 10.^(m1*(M-m2))+m3``
m3 = varies as per focal mechanism for ASC and Slab TRTs
"""
if trt == const.TRT.SUBDUCTION_INTERFACE:
m3 = np.full_like(ctx.rake, C["m3_RS"]) # reverse
else:
ss = C["m3_SS"] # strike-slip
m3 = np.full_like(ctx.rake, ss)
m3[(ctx.rake <= -45.) & (ctx.rake >= -135.)] = C["m3_NS"] # normal
m3[(ctx.rake >= 45.) & (ctx.rake <= 135.)] = C["m3_RS"] # reverse
fsource = np.round(10 ** (C['m1'] * (ctx.mag - C['m2'])) + m3, 4)
return fsource
def _get_path_term(C, ctx):
"""
Implementing Eqs. 9, 10 and 11
"""
slope = C['r1'] + C['r2'] * (ctx.mag - 4.0)
mse = (ctx.mag - C['M1']) / (C['M2'] - C['M1'])
mse[ctx.mag > C['M2']] = 1.
mse[ctx.mag <= C['M1']] = 0.
fpath = np.round(slope * ctx.rrup, 4)
idx = ctx.rrup > C['R1']
term = mse[idx] * (ctx.rrup[idx] - C['R1'])
fpath[idx] = np.round(slope[idx] * (C['R1'] + term), 4)
return fpath
def _get_site_term(C, ctx):
"""
Implementing Eqs. 5, 6 and 12
"""
mean_z1pt0 = (np.exp(((-5.23 / 2.) * np.log((ctx.vs30 ** 2. +
412.39 ** 2.) / (1360 ** 2. + 412.39 ** 2.)))-0.9))
delta_z1pt0 = np.round(ctx.z1pt0 - mean_z1pt0, 4)
fsite = []
for i, value in enumerate(delta_z1pt0):
s = (np.round(C['s1'] * np.log(min(ctx.vs30[i], 600.) / 600.) +
C['s2']*min(delta_z1pt0[i], 250.0) + C['s3'], 4))
fsite.append(s)
return fsite
def _get_stddevs(C):
"""
The authors have provided the values of
sigma = np.sqrt(tau**2+phi_ss**2+phi_s2s**2)
The within event term (phi) has been calculated by
combining the phi_ss and phi_s2s
"""
sig = C['sig']
tau = C['tau']
phi = np.sqrt(C['phi_ss']**2 + C['phi_s2s']**2)
return sig, tau, phi
[docs]class BahrampouriEtAldm2021Asc(GMPE):
"""
Implements GMPE by Mahdi Bahrampouri, Adrian Rodriguez-Marek
and Russell A Green developed from the KiK-net database. This GMPE is
specifically derived for significant durations: Ds5-Ds95,D25-Ds75. This
GMPE is described in a paper published in 2021 on Earthquake Spectra,
Volume 37, Pg 903-920 and titled 'Ground motion prediction equations for
significant duration using the KiK-net database'.
"""
#: Supported tectonic region type is active shallow crust
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST
#: Supported intensity measure types are 5 - 95 % Arias and 5 - 75 % Arias
#: significant duration
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {RSD595, RSD575}
#: Supported intensity measure component is the geometric mean horizontal
#: component
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.GEOMETRIC_MEAN
#: Supported standard deviation type is only total, see table 7, page 35
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {
const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT}
#: Requires vs30
REQUIRES_SITES_PARAMETERS = {'vs30', 'z1pt0'}
#: Required rupture parameters are magnitude and top of rupture depth
REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake'}
#: Required distance measure is closest distance to rupture
REQUIRES_DISTANCES = {'rrup'}
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.compute>`
for spec of input and result values.
"""
trt = self.DEFINED_FOR_TECTONIC_REGION_TYPE
for m, imt in enumerate(imts):
C = self.COEFFS[imt]
mean[m] = np.log(
_get_source_term(trt, C, ctx) + _get_path_term(C, ctx)
) + _get_site_term(C, ctx)
sig[m], tau[m], phi[m] = _get_stddevs(C)
COEFFS = CoeffsTable(table="""
imt m1 m2 m3_RS m3_SS m3_NS M1 M2 r1 r2 R1 s1 s2 s3 sig tau phi_s2s phi_ss
rsd595 0.6899 6.511 4.584 4.252 5.522 4. 6.5 0.21960 0. 60. -0.3008 0.00119 -0.1107 0.462 0.204 0.185 0.370
rsd575 0.7966 6.5107 0.06828 0.2902 0.613 4. 6.5 0.1248 0. 60. -0.1894 0.0003362 -0.03979 0.586 0.233 0.223 0.490
""")
[docs]class BahrampouriEtAldm2021SSlab(BahrampouriEtAldm2021Asc):
"""
Implements GMPE by Mahdi Bahrampouri, Adrian Rodriguez-Marek
and Russell A Green developed from the KiK-net database. This GMPE is
specifically derived for significant durations: Ds5-Ds95,D25-Ds75. This
GMPE is described in a paper published in 2021 on Earthquake Spectra,
Volume 37, Pg 903-920 and titled 'Ground motion prediction equations for
significant duration using the KiK-net database'.
"""
#: Supported tectonic region type is active shallow crust
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.SUBDUCTION_INTRASLAB
#: Supported intensity measure types are 5 - 95 % Arias and 5 - 75 % Arias
#: significant duration
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {RSD595, RSD575}
#: Supported intensity measure component is the geometric mean horizontal
#: component
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.GEOMETRIC_MEAN
#: Supported standard deviation type is only total, see table 7, page 35
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {
const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT}
#: Requires vs30
REQUIRES_SITES_PARAMETERS = {'vs30', 'z1pt0'}
#: Required rupture parameters are magnitude and top of rupture depth
REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake'}
#: Required distance measure is closest distance to rupture
REQUIRES_DISTANCES = {'rrup'}
COEFFS = CoeffsTable(sa_damping=5, table="""
imt m1 m2 m3_RS m3_SS m3_NS M1 M2 r1 r2 R1 s1 s2 s3 sig tau phi_s2s phi_ss
rsd595 0.385 4.1604 5.828 4.231 5.496 5.5 8.0 0.09936 0.02495 200.0 -0.244 0.001409 -0.04109 0.458 0.194 0.245 0.335
rsd575 0.4232 5.1674 0.975 0.3965 0.8712 5.0 8.0 0.057576 0.01316 200.0 -0.1431 0.001440 0.04534 0.593 0.261 0.288 0.449
""")
[docs]class BahrampouriEtAldm2021SInter(BahrampouriEtAldm2021Asc):
"""
Implements GMPE by Mahdi Bahrampouri, Adrian Rodriguez-Marek
and Russell A Green developed from the KiK-net database. This GMPE is
specifically derived for significant durations: Ds5-Ds95,D25-Ds75. This
GMPE is described in a paper published in 2021 on Earthquake Spectra,
Volume 37, Pg 903-920 and titled 'Ground motion prediction equations for
significant duration using the KiK-net database'.
"""
#: Supported tectonic region type is active shallow crust
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.SUBDUCTION_INTERFACE
#: Supported intensity measure types are 5 - 95 % Arias and 5 - 75 % Arias
#: significant duration
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {RSD595, RSD575}
#: Supported intensity measure component is the geometric mean horizontal
#: component
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.GEOMETRIC_MEAN
#: Supported standard deviation type is only total, see table 7, page 35
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {
const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT}
#: Requires vs30
REQUIRES_SITES_PARAMETERS = {'vs30', 'z1pt0'}
#: Required rupture parameters are magnitude and top of rupture depth
REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake'}
#: Required distance measure is closest distance to rupture
REQUIRES_DISTANCES = {'rrup'}
COEFFS = CoeffsTable(sa_damping=5, table="""
imt m1 m2 m3_RS M1 M2 r1 r2 R1 s1 s2 s3 sig tau phi_s2s phi_ss
rsd595 0.2384 4.16 8.4117 5.5 8.0 0.08862 0.04194 200.0 -0.2875 0.001234 -0.03137 0.403 0.191 0.233 0.275
rsd575 0.4733 6.1623 0.515 5.0 8.0 0.07505 0.0156 200.0 -0.1464 0.00075 0.357 0.490 0.218 0.238 0.369
""")