# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2018-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import re
import abc
import copy
import time
import logging
import warnings
import itertools
import collections
from unittest.mock import patch
import numpy
import shapely
from scipy.interpolate import interp1d
from openquake.baselib.general import (
AccumDict, DictArray, RecordBuilder, split_in_slices, block_splitter,
sqrscale)
from openquake.baselib.performance import Monitor, split_array, kround0
from openquake.baselib.python3compat import decode
from openquake.hazardlib import valid, imt as imt_module
from openquake.hazardlib.const import StdDev, OK_COMPONENTS
from openquake.hazardlib.tom import FatedTOM, NegativeBinomialTOM, PoissonTOM
from openquake.hazardlib.stats import ndtr
from openquake.hazardlib.site import site_param_dt
from openquake.hazardlib.calc.filters import (
SourceFilter, IntegrationDistance, magdepdist, get_distances, getdefault,
MINMAG, MAXMAG)
from openquake.hazardlib.probability_map import ProbabilityMap
from openquake.hazardlib.geo.surface.planar import (
project, project_back, get_distances_planar)
U32 = numpy.uint32
F16 = numpy.float16
F64 = numpy.float64
TWO20 = 2**20 # used when collapsing
TWO16 = 2**16
TWO24 = 2**24
TWO32 = 2**32
STD_TYPES = (StdDev.TOTAL, StdDev.INTER_EVENT, StdDev.INTRA_EVENT)
KNOWN_DISTANCES = frozenset(
'rrup rx ry0 rjb rhypo repi rcdpp azimuth azimuth_cp rvolc closest_point'
.split())
NUM_BINS = 256
DIST_BINS = sqrscale(80, 1000, NUM_BINS)
MULTIPLIER = 150 # len(mean_stds arrays) / len(poes arrays)
MEA = 0
STD = 1
# These coordinates were provided by M Gerstenberger (personal
# communication, 10 August 2018)
cshm_polygon = shapely.geometry.Polygon([(171.6, -43.3), (173.2, -43.3),
(173.2, -43.9), (171.6, -43.9)])
[docs]def round_dist(dst):
idx = numpy.searchsorted(DIST_BINS, dst)
idx[idx == NUM_BINS] -= 1
return DIST_BINS[idx]
[docs]def is_modifiable(gsim):
"""
:returns: True if it is a ModifiableGMPE
"""
return hasattr(gsim, 'gmpe') and hasattr(gsim, 'params')
[docs]def split_by_occur(ctx):
"""
:returns: [poissonian] or [poissonian, nonpoissonian,...]
"""
nan = numpy.isnan(ctx.occurrence_rate)
out = []
if 0 < nan.sum() < len(ctx):
out.append(ctx[~nan])
nonpoisson = ctx[nan]
for shp in set(np.probs_occur.shape[1] for np in nonpoisson):
p_array = [p for p in nonpoisson if p.probs_occur.shape[1] == shp]
out.append(numpy.concatenate(p_array).view(numpy.recarray))
else:
out.append(ctx)
return out
[docs]def concat(ctxs):
"""
Concatenate context arrays.
:returns: [] or [poisson_ctx] or [poisson_ctx, nonpoisson_ctx, ...]
"""
out, poisson, nonpoisson, nonparam = [], [], [], []
for ctx in ctxs:
if numpy.isnan(ctx.occurrence_rate).all():
nonparam.append(ctx)
# If ctx has probs_occur and occur_rate is parametric non-poisson
elif hasattr(ctx, 'probs_occur') and ctx.probs_occur.shape[1] >= 1:
nonpoisson.append(ctx)
else:
poisson.append(ctx)
if poisson:
out.append(numpy.concatenate(poisson).view(numpy.recarray))
if nonpoisson:
# Ctxs with the same shape of prob_occur are concatenated
# and different shape sets are appended separately
for shp in set(ctx.probs_occur.shape[1] for ctx in nonpoisson):
p_array = [p for p in nonpoisson
if p.probs_occur.shape[1] == shp]
out.append(numpy.concatenate(p_array).view(numpy.recarray))
if nonparam:
out.append(numpy.concatenate(nonparam).view(numpy.recarray))
return out
[docs]def get_maxsize(M, G):
"""
:returns: an integer N such that arrays N*M*G fit in the CPU cache
"""
maxs = TWO20 // (2*M*G)
assert maxs > 1, maxs
return maxs * MULTIPLIER
[docs]def size(imtls):
"""
:returns: size of the dictionary of arrays imtls
"""
imls = imtls[next(iter(imtls))]
return len(imls) * len(imtls)
[docs]def trivial(ctx, name):
"""
:param ctx: a recarray
:param name: name of a parameter
:returns: True if the parameter is missing or single valued
"""
if name not in ctx.dtype.names:
return True
return len(numpy.unique(numpy.float32(ctx[name]))) == 1
[docs]class Oq(object):
def __init__(self, **hparams):
vars(self).update(hparams)
[docs] def get_reqv(self):
if 'reqv' not in self.inputs:
return
return {key: valid.RjbEquivalent(value)
for key, value in self.inputs['reqv'].items()}
[docs]class DeltaRatesGetter(object):
"""
Read the delta rates from an aftershock datastore
"""
def __init__(self, dstore):
self.dstore = dstore
def __call__(self, src_id):
with self.dstore.open('r') as dstore:
return dstore['delta_rates'][src_id]
# same speed as performance.kround, round more
[docs]def kround1(ctx, kfields):
kdist = 2. * ctx.mag**2 # heuristic collapse distance from 32 to 200 km
close = ctx.rrup < kdist
far = ~close
out = numpy.zeros(len(ctx), [(k, ctx.dtype[k]) for k in kfields])
for kfield in kfields:
kval = ctx[kfield]
if kfield == 'vs30':
out[kfield][close] = numpy.round(kval[close]) # round less
out[kfield][far] = numpy.round(kval[far], 1) # round more
elif kval.dtype == F64 and kfield != 'mag':
out[kfield][close] = F16(kval[close]) # round less
out[kfield][far] = numpy.round(kval[far]) # round more
else:
out[kfield] = ctx[kfield]
return out
[docs]def kround2(ctx, kfields):
kdist = 5. * ctx.mag**2 # from 80 to 500 km
close = ctx.rrup < kdist
far = ~close
out = numpy.zeros(len(ctx), [(k, ctx.dtype[k]) for k in kfields])
for kfield in kfields:
kval = ctx[kfield]
if kfield == 'rx': # can be negative
out[kfield] = numpy.round(kval)
elif kfield in KNOWN_DISTANCES:
out[kfield][close] = numpy.ceil(kval[close]) # round to 1 km
out[kfield][far] = round_dist(kval[far]) # round more
elif kfield == 'vs30':
out[kfield][close] = numpy.round(kval[close]) # round less
out[kfield][far] = numpy.round(kval[far], 1) # round more
elif kval.dtype == F64 and kfield != 'mag':
out[kfield][close] = F16(kval[close]) # round less
out[kfield][far] = numpy.round(kval[far]) # round more
else:
out[kfield] = ctx[kfield]
return out
kround = {0: kround0, 1: kround1, 2: kround2}
[docs]class Collapser(object):
"""
Class managing the collapsing logic.
"""
def __init__(self, collapse_level, kfields):
self.collapse_level = collapse_level
self.kfields = sorted(kfields)
self.cfactor = numpy.zeros(3)
[docs] def collapse(self, ctx, mon, rup_indep, collapse_level=None):
"""
Collapse a context recarray if possible.
:param ctx: a recarray with "sids"
:param rup_indep: False if the ruptures are mutually exclusive
:param collapse_level: if None, use .collapse_level
:returns: the collapsed array and the inverting indices
"""
clevel = (collapse_level if collapse_level is not None
else self.collapse_level)
if not rup_indep or clevel < 0:
# no collapse
self.cfactor[0] += len(ctx)
self.cfactor[1] += len(ctx)
self.cfactor[2] += 1
return ctx, None
with mon:
krounded = kround[clevel](ctx, self.kfields)
out, inv = numpy.unique(krounded, return_inverse=True)
self.cfactor[0] += len(out)
self.cfactor[1] += len(ctx)
self.cfactor[2] += 1
return out.view(numpy.recarray), inv.astype(U32)
[docs]class FarAwayRupture(Exception):
"""Raised if the rupture is outside the maximum distance for all sites"""
[docs]def basename(src, splitchars='.:'):
"""
:returns: the base name of a split source
"""
src_id = src if isinstance(src, str) else src.source_id
return re.split('[%s]' % splitchars, src_id)[0]
[docs]def get_num_distances(gsims):
"""
:returns: the number of distances required for the given GSIMs
"""
dists = set()
for gsim in gsims:
dists.update(gsim.REQUIRES_DISTANCES)
return len(dists)
# NB: minimum_magnitude is ignored
def _interp(param, name, trt):
try:
mdd = param[name]
except KeyError:
return magdepdist([(MINMAG, 1000), (MAXMAG, 1000)])
if isinstance(mdd, IntegrationDistance):
return mdd(trt)
elif isinstance(mdd, dict):
if mdd:
magdist = getdefault(mdd, trt)
else:
magdist = [(MINMAG, 1000), (MAXMAG, 1000)]
return magdepdist(magdist)
return mdd
[docs]class ContextMaker(object):
"""
A class to manage the creation of contexts and to compute mean/stddevs
and possibly PoEs.
:param trt: tectonic region type string
:param gsims: list of GSIMs or a dictionary gsim -> rlz indices
:param oq:
dictionary of parameters like the maximum_distance, the IMTLs,
the investigation time, etc, or an OqParam instance
:param extraparams:
additional site parameters to consider, used only in the tests
NB: the trt can be different from the tectonic region type for which
the underlying GSIMs are defined. This is intentional.
"""
REQUIRES = ['DISTANCES', 'SITES_PARAMETERS', 'RUPTURE_PARAMETERS']
deltagetter = None
fewsites = False
tom = None
def __init__(self, trt, gsims, oq, monitor=Monitor(), extraparams=()):
if isinstance(oq, dict):
param = oq
oq = Oq(**param)
self.mags = param.get('mags', ())
self.cross_correl = param.get('cross_correl') # cond_spectra_test
else: # OqParam
param = vars(oq)
param['split_sources'] = oq.split_sources
param['min_iml'] = oq.min_iml
param['reqv'] = oq.get_reqv()
param['af'] = getattr(oq, 'af', None)
self.cross_correl = oq.cross_correl
self.imtls = oq.imtls
try:
self.mags = oq.mags_by_trt[trt]
except AttributeError:
self.mags = ()
except KeyError: # missing TRT but there is only one
[(_, self.mags)] = oq.mags_by_trt.items()
if 'poes' in param:
self.poes = param['poes']
if 'imtls' in param:
for imt in param['imtls']:
if not isinstance(imt, str):
raise TypeError('Expected string, got %s' % type(imt))
self.imtls = param['imtls']
elif 'hazard_imtls' in param:
self.imtls = DictArray(param['hazard_imtls'])
elif not hasattr(self, 'imtls'):
raise KeyError('Missing imtls in ContextMaker!')
self.cache_distances = param.get('cache_distances', False)
if self.cache_distances:
# use a cache (surface ID, dist_type) for MultiFaultSources
self.dcache = AccumDict()
self.dcache.hit = 0
else:
self.dcache = None # disabled
self.max_sites_disagg = param.get('max_sites_disagg', 10)
self.time_per_task = param.get('time_per_task', 60)
self.collapse_level = int(param.get('collapse_level', -1))
self.disagg_by_src = param.get('disagg_by_src', False)
self.trt = trt
self.gsims = gsims
self.oq = oq
for gsim in gsims:
if hasattr(gsim, 'set_tables'):
if len(self.mags) == 0 and not is_modifiable(gsim):
raise ValueError(
'You must supply a list of magnitudes as 2-digit '
'strings, like mags=["6.00", "6.10", "6.20"]')
gsim.set_tables(self.mags, self.imtls)
self.horiz_comp = param.get('horiz_comp_to_geom_mean', False)
self.maximum_distance = _interp(param, 'maximum_distance', trt)
if 'pointsource_distance' not in param:
self.pointsource_distance = 1000.
else:
self.pointsource_distance = getdefault(
param['pointsource_distance'], trt)
self.minimum_distance = param.get('minimum_distance', 0)
self.investigation_time = param.get('investigation_time')
self.ses_seed = param.get('ses_seed', 42)
self.ses_per_logic_tree_path = param.get('ses_per_logic_tree_path', 1)
self.truncation_level = param.get('truncation_level', 99.)
self.phi_b = ndtr(self.truncation_level)
self.num_epsilon_bins = param.get('num_epsilon_bins', 1)
self.disagg_bin_edges = param.get('disagg_bin_edges', {})
self.ps_grid_spacing = param.get('ps_grid_spacing')
self.split_sources = param.get('split_sources')
self.effect = param.get('effect')
for req in self.REQUIRES:
reqset = set()
for gsim in gsims:
reqset.update(getattr(gsim, 'REQUIRES_' + req))
if getattr(self.oq, 'af', None) and req == 'SITES_PARAMETERS':
reqset.add('ampcode')
if is_modifiable(gsim) and req == 'SITES_PARAMETERS':
reqset.add('vs30') # required by the ModifiableGMPE
reqset.update(gsim.gmpe.REQUIRES_SITES_PARAMETERS)
if 'apply_swiss_amplification' in gsim.params:
reqset.add('amplfactor')
setattr(self, 'REQUIRES_' + req, reqset)
try:
self.min_iml = param['min_iml']
except KeyError:
self.min_iml = [0. for imt in self.imtls]
self.reqv = param.get('reqv')
if self.reqv is not None:
self.REQUIRES_DISTANCES.add('repi')
# NB: REQUIRES_DISTANCES is empty when gsims = [FromFile]
REQUIRES_DISTANCES = self.REQUIRES_DISTANCES | {'rrup'}
reqs = (sorted(self.REQUIRES_RUPTURE_PARAMETERS) +
sorted(self.REQUIRES_SITES_PARAMETERS | set(extraparams)) +
sorted(REQUIRES_DISTANCES))
dic = {}
for req in reqs:
if req in site_param_dt:
dt = site_param_dt[req]
if isinstance(dt, tuple): # (string_, size)
dic[req] = b'X' * dt[1]
else:
dic[req] = dt(0)
else:
dic[req] = 0.
dic['src_id'] = U32(0)
dic['rup_id'] = U32(0)
dic['sids'] = U32(0)
dic['rrup'] = numpy.float64(0)
dic['occurrence_rate'] = numpy.float64(0)
self.defaultdict = dic
self.shift_hypo = param.get('shift_hypo')
self.set_imts_conv()
self.init_monitoring(monitor)
[docs] def init_monitoring(self, monitor):
# instantiating child monitors, may be called in the workers
self.pla_mon = monitor('planar contexts', measuremem=False)
self.ctx_mon = monitor('nonplanar contexts', measuremem=False)
self.gmf_mon = monitor('computing mean_std', measuremem=False)
self.poe_mon = monitor('get_poes', measuremem=False)
self.pne_mon = monitor('composing pnes', measuremem=False)
self.ir_mon = monitor('iter_ruptures', measuremem=True)
self.delta_mon = monitor('getting delta_rates', measuremem=False)
self.col_mon = monitor('collapsing contexts', measuremem=False)
self.task_no = getattr(monitor, 'task_no', 0)
self.out_no = getattr(monitor, 'out_no', self.task_no)
kfields = (self.REQUIRES_DISTANCES |
self.REQUIRES_RUPTURE_PARAMETERS |
self.REQUIRES_SITES_PARAMETERS)
self.collapser = Collapser(self.collapse_level, kfields)
[docs] def restrict(self, imts):
"""
:param imts: a list of IMT strings subset of the full list
:returns: a new ContextMaker involving less IMTs
"""
new = copy.copy(self)
new.imtls = DictArray({imt: self.imtls[imt] for imt in imts})
new.set_imts_conv()
return new
[docs] def set_imts_conv(self):
"""
Set the .imts list and .conv dictionary for the horizontal component
conversion (if any).
"""
self.loglevels = DictArray(self.imtls) if self.imtls else {}
with warnings.catch_warnings():
# avoid RuntimeWarning: divide by zero encountered in log
warnings.simplefilter("ignore")
for imt, imls in self.imtls.items():
if imt != 'MMI':
self.loglevels[imt] = numpy.log(imls)
self.imts = tuple(imt_module.from_string(im) for im in self.imtls)
self.conv = {} # gsim -> imt -> (conv_median, conv_sigma, rstd)
if not self.horiz_comp:
return # do not convert
for gsim in self.gsims:
self.conv[gsim] = {}
imc = gsim.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT
if imc.name == 'GEOMETRIC_MEAN':
pass # nothing to do
elif imc.name in OK_COMPONENTS:
dic = {imt: imc.apply_conversion(imt) for imt in self.imts}
self.conv[gsim].update(dic)
else:
logging.warning(f'Conversion from {imc.name} not applicable to'
f' {gsim.__class__.__name__}')
[docs] def horiz_comp_to_geom_mean(self, mean_stds):
"""
This function converts ground-motion obtained for a given description
of horizontal component into ground-motion values for geometric_mean.
The conversion equations used are from:
- Beyer and Bommer (2006): for arithmetic mean, GMRot and random
- Boore and Kishida (2017): for RotD50
"""
for g, gsim in enumerate(self.gsims):
if not self.conv[gsim]:
continue
for m, imt in enumerate(self.imts):
me, si, ta, ph = mean_stds[:, g, m]
conv_median, conv_sigma, rstd = self.conv[gsim][imt]
me[:] = numpy.log(numpy.exp(me) / conv_median)
si[:] = ((si**2 - conv_sigma**2) / rstd**2)**0.5
@property
def Z(self):
"""
:returns: the number of realizations associated to self
"""
return sum(len(rlzs) for rlzs in self.gsims.values())
[docs] def dcache_size(self):
"""
:returns: the size in bytes of the distance cache
"""
if not self.dcache:
return 0
nbytes = 0
for arr in self.dcache.values():
if isinstance(arr, numpy.ndarray):
nbytes += arr.nbytes
return nbytes
[docs] def new_ctx(self, size):
"""
:returns: a recarray of the given size full of zeros
"""
return RecordBuilder(**self.defaultdict).zeros(size)
[docs] def recarray(self, ctxs):
"""
:params ctxs: a non-empty list of homogeneous contexts
:returns: a recarray, possibly collapsed
"""
assert ctxs
dd = self.defaultdict.copy()
if not hasattr(ctxs[0], 'probs_occur'):
for ctx in ctxs:
ctx.probs_occur = numpy.zeros(0)
np = 0
else:
shps = [ctx.probs_occur.shape for ctx in ctxs]
np = max(i[1] if len(i) > 1 else i[0] for i in shps)
dd['probs_occur'] = numpy.zeros(np)
if self.fewsites: # must be at the end
dd['clon'] = numpy.float64(0.)
dd['clat'] = numpy.float64(0.)
C = sum(len(ctx) for ctx in ctxs)
ra = RecordBuilder(**dd).zeros(C)
start = 0
for ctx in ctxs:
ctx = ctx.roundup(self.minimum_distance)
slc = slice(start, start + len(ctx))
for par in dd:
if par == 'rup_id':
val = getattr(ctx, par)
else:
val = getattr(ctx, par, numpy.nan)
getattr(ra, par)[slc] = val
ra.sids[slc] = ctx.sids
start = slc.stop
return ra
[docs] def get_ctx_params(self):
"""
:returns: the interesting attributes of the context
"""
params = {'occurrence_rate', 'sids', 'src_id',
'probs_occur', 'clon', 'clat', 'rrup'}
params.update(self.REQUIRES_RUPTURE_PARAMETERS)
for dparam in self.REQUIRES_DISTANCES:
params.add(dparam + '_')
return params
[docs] def from_srcs(self, srcs, sitecol): # used in disagg.disaggregation
"""
:param srcs: a list of Source objects
:param sitecol: a SiteCollection instance
:returns: a list of context arrays
"""
ctxs = []
srcfilter = SourceFilter(sitecol, self.maximum_distance)
for i, src in enumerate(srcs):
if src.id == -1: # not set yet
src.id = i
sites = srcfilter.get_close_sites(src)
if sites is not None:
ctxs.extend(self.get_ctx_iter(src, sites))
return concat(ctxs)
[docs] def make_legacy_ctx(self, rup):
"""
Add .REQUIRES_RUPTURE_PARAMETERS to the rupture
"""
ctx = RuptureContext()
vars(ctx).update(vars(rup))
for param in self.REQUIRES_RUPTURE_PARAMETERS:
if param == 'mag':
value = numpy.round(rup.mag, 3)
elif param == 'strike':
value = rup.surface.get_strike()
elif param == 'dip':
value = rup.surface.get_dip()
elif param == 'rake':
value = rup.rake
elif param == 'ztor':
value = rup.surface.get_top_edge_depth()
elif param == 'hypo_lon':
value = rup.hypocenter.longitude
elif param == 'hypo_lat':
value = rup.hypocenter.latitude
elif param == 'hypo_depth':
value = rup.hypocenter.depth
elif param == 'width':
value = rup.surface.get_width()
elif param == 'in_cshm':
# used in McVerry and Bradley GMPEs
if rup.surface:
lons = rup.surface.mesh.lons.flatten()
lats = rup.surface.mesh.lats.flatten()
points_in_polygon = (
shapely.geometry.Point(lon, lat).within(cshm_polygon)
for lon, lat in zip(lons, lats))
value = any(points_in_polygon)
else:
value = False
elif param == 'zbot':
# needed for width estimation in CampbellBozorgnia2014
if rup.surface:
value = rup.surface.mesh.depths.max()
else:
value = rup.hypocenter.depth
else:
raise ValueError('%s requires unknown rupture parameter %r' %
(type(self).__name__, param))
setattr(ctx, param, value)
if not hasattr(ctx, 'occurrence_rate'):
ctx.occurrence_rate = numpy.nan
if hasattr(ctx, 'temporal_occurrence_model'):
if isinstance(ctx.temporal_occurrence_model, NegativeBinomialTOM):
ctx.probs_occur = ctx.temporal_occurrence_model.get_pmf(
ctx.occurrence_rate)
return ctx
[docs] def get_legacy_ctx(self, rup, sites, distances=None):
"""
:returns: a legacy RuptureContext (or None if filtered away)
"""
ctx = self.make_legacy_ctx(rup)
for name in sites.array.dtype.names:
setattr(ctx, name, sites[name])
if distances is None:
distances = rup.surface.get_min_distance(sites.mesh)
ctx.rrup = distances
ctx.sites = sites
for param in self.REQUIRES_DISTANCES - {'rrup'}:
dists = get_distances(rup, sites, param, self.dcache)
setattr(ctx, param, dists)
# Equivalent distances
reqv_obj = (self.reqv.get(self.trt) if self.reqv else None)
if reqv_obj and not rup.surface: # PointRuptures have no surface
reqv = reqv_obj.get(ctx.repi, rup.mag)
if 'rjb' in self.REQUIRES_DISTANCES:
ctx.rjb = reqv
if 'rrup' in self.REQUIRES_DISTANCES:
ctx.rrup = numpy.sqrt(reqv**2 + rup.hypocenter.depth**2)
return ctx
def _get_ctx_planar(self, mag, planar, sites, src_id, start_stop, tom):
# computing distances
rrup, xx, yy = project(planar, sites.xyz) # (3, U, N)
if self.fewsites:
# get the closest points on the surface
closest = project_back(planar, xx, yy) # (3, U, N)
dists = {'rrup': rrup}
for par in self.REQUIRES_DISTANCES - {'rrup'}:
dists[par] = get_distances_planar(planar, sites, par)
for par in dists:
dst = dists[par]
if self.minimum_distance:
dst[dst < self.minimum_distance] = self.minimum_distance
# building contexts; ctx has shape (U, N), ctxt (N, U)
ctx = self.build_ctx((len(planar), len(sites)))
ctxt = ctx.T # smart trick taking advantage of numpy magic
ctxt['src_id'] = src_id
if self.fewsites:
# the loop below is a bit slow
for u, rup_id in enumerate(range(*start_stop)):
ctx[u]['rup_id'] = rup_id
# setting rupture parameters
for par in self.ruptparams:
if par == 'mag':
ctxt[par] = mag
elif par == 'occurrence_rate':
ctxt[par] = planar.wlr[:, 2] # shape U-> (N, U)
elif par == 'width':
ctxt[par] = planar.wlr[:, 0]
elif par == 'strike':
ctxt[par] = planar.sdr[:, 0]
elif par == 'dip':
ctxt[par] = planar.sdr[:, 1]
elif par == 'rake':
ctxt[par] = planar.sdr[:, 2]
elif par == 'ztor': # top edge depth
ctxt[par] = planar.corners[:, 2, 0]
elif par == 'zbot': # bottom edge depth
ctxt[par] = planar.corners[:, 2, 3]
elif par == 'hypo_lon':
ctxt[par] = planar.hypo[:, 0]
elif par == 'hypo_lat':
ctxt[par] = planar.hypo[:, 1]
elif par == 'hypo_depth':
ctxt[par] = planar.hypo[:, 2]
# setting distance parameters
for par in dists:
ctx[par] = dists[par]
if self.fewsites:
ctx['clon'] = closest[0]
ctx['clat'] = closest[1]
# setting site parameters
for par in self.siteparams:
ctx[par] = sites.array[par] # shape N-> (U, N)
if hasattr(tom, 'get_pmf'): # NegativeBinomialTOM
# read Probability Mass Function from model and reshape it
# into predetermined shape of probs_occur
pmf = tom.get_pmf(planar.wlr[:, 2],
n_max=ctx['probs_occur'].shape[2])
ctx['probs_occur'] = pmf[:, numpy.newaxis, :]
return ctx
[docs] def gen_ctxs_planar(self, src, sitecol):
"""
:param src: a (Collapsed)PointSource
:param sitecol: a filtered SiteCollection
:yields: context arrays
"""
dd = self.defaultdict.copy()
tom = src.temporal_occurrence_model
if isinstance(tom, NegativeBinomialTOM):
if hasattr(src, 'pointsources'): # CollapsedPointSource
maxrate = max(max(ps.mfd.occurrence_rates)
for ps in src.pointsources)
else: # regular source
maxrate = max(src.mfd.occurrence_rates)
p_size = tom.get_pmf(maxrate).shape[1]
dd['probs_occur'] = numpy.zeros(p_size)
else:
dd['probs_occur'] = numpy.zeros(0)
if self.fewsites:
dd['clon'] = numpy.float64(0.)
dd['clat'] = numpy.float64(0.)
self.build_ctx = RecordBuilder(**dd).zeros
self.siteparams = [par for par in sitecol.array.dtype.names
if par in dd]
self.ruptparams = (
self.REQUIRES_RUPTURE_PARAMETERS | {'occurrence_rate'})
with self.ir_mon:
# building planar geometries
planardict = src.get_planar(self.shift_hypo)
magdist = {mag: self.maximum_distance(mag)
for mag, rate in src.get_annual_occurrence_rates()}
# self.maximum_distance(mag) can be 0 if outside the mag range
maxmag = max(mag for mag, dist in magdist.items() if dist > 0)
maxdist = magdist[maxmag]
cdist = sitecol.get_cdist(src.location)
# NB: having a decent max_radius is essential for performance!
mask = cdist <= maxdist + src.max_radius(maxdist)
sitecol = sitecol.filter(mask)
if sitecol is None:
return []
for magi, mag, planarlist, sites in self._quartets(
src, sitecol, cdist[mask], magdist, planardict):
if not planarlist:
continue
elif len(planarlist) > 1: # when using ps_grid_spacing
pla = numpy.concatenate(planarlist).view(numpy.recarray)
else:
pla = planarlist[0]
offset = src.offset + magi * len(pla)
start_stop = offset, offset + len(pla)
ctx = self._get_ctx_planar(
mag, pla, sites, src.id, start_stop, tom).flatten()
ctxt = ctx[ctx.rrup < magdist[mag]]
if len(ctxt):
yield ctxt
def _quartets(self, src, sitecol, cdist, magdist, planardict):
minmag = self.maximum_distance.x[0]
maxmag = self.maximum_distance.x[-1]
# splitting by magnitude
if src.count_nphc() == 1:
# one rupture per magnitude
for m, (mag, pla) in enumerate(planardict.items()):
if minmag < mag < maxmag:
yield m, mag, pla, sitecol
else:
for m, rup in enumerate(src.iruptures()):
mag = rup.mag
if mag > maxmag or mag < minmag:
continue
arr = [rup.surface.array.reshape(-1, 3)]
pla = planardict[mag]
# NB: having a good psdist is essential for performance!
psdist = src.get_psdist(m, mag, self.pointsource_distance,
magdist)
close = sitecol.filter(cdist <= psdist)
far = sitecol.filter(cdist > psdist)
if self.fewsites:
if close is None: # all is far, common for small mag
yield m, mag, arr, sitecol
else: # something is close
yield m, mag, pla, sitecol
else: # many sites
if close is None: # all is far
yield m, mag, arr, far
elif far is None: # all is close
yield m, mag, pla, close
else: # some sites are far, some are close
yield m, mag, arr, far
yield m, mag, pla, close
# this is called for non-point sources (or point sources in preclassical)
[docs] def gen_contexts(self, rups_sites, src_id):
"""
:yields: the old-style RuptureContexts generated by the source
"""
for rups, sites in rups_sites: # ruptures with the same magnitude
if len(rups) == 0: # may happen in case of min_mag/max_mag
continue
magdist = self.maximum_distance(rups[0].mag)
for u, rup in enumerate(rups):
dist = get_distances(rup, sites, 'rrup', self.dcache)
mask = dist <= magdist
if mask.any():
r_sites = sites.filter(mask)
rctx = self.get_legacy_ctx(rup, r_sites, dist[mask])
rctx.src_id = src_id
if src_id >= 0: # classical calculation
rctx.rup_id = rup.rup_id
if self.fewsites:
c = rup.surface.get_closest_points(sites.complete)
rctx.clon = c.lons[rctx.sids]
rctx.clat = c.lats[rctx.sids]
yield rctx
[docs] def get_ctx_iter(self, src, sitecol, src_id=0, step=1):
"""
:param src:
a source object (already split) or a list of ruptures
:param sitecol:
a (filtered) SiteCollection
:param src_id:
integer source ID used where src is actually a list
:param step:
> 1 only in preclassical
:returns:
iterator over recarrays
"""
self.fewsites = len(sitecol.complete) <= self.max_sites_disagg
if getattr(src, 'location', None) and step == 1:
return self.pla_mon.iter(self.gen_ctxs_planar(src, sitecol))
elif hasattr(src, 'source_id'): # other source
minmag = self.maximum_distance.x[0]
maxmag = self.maximum_distance.x[-1]
with self.ir_mon:
allrups = list(src.iter_ruptures(
shift_hypo=self.shift_hypo, step=step))
for i, rup in enumerate(allrups):
rup.rup_id = src.offset + i
allrups = [rup for rup in allrups if minmag < rup.mag < maxmag]
self.num_rups = len(allrups)
# sorted by mag by construction
u32mags = U32([rup.mag * 100 for rup in allrups])
rups_sites = [(rups, sitecol) for rups in split_array(
numpy.array(allrups), u32mags)]
src_id = src.id
else: # in event based we get a list with a single rupture
rups_sites = [(src, sitecol)]
src_id = -1
rctxs = self.gen_contexts(rups_sites, src_id)
blocks = block_splitter(rctxs, 10_000, weight=len)
# the weight of 10_000 ensure less than 1MB per block (recarray)
return self.ctx_mon.iter(map(self.recarray, blocks))
[docs] def max_intensity(self, sitecol1, mags, dists):
"""
:param sitecol1: a SiteCollection instance with a single site
:param mags: a sequence of magnitudes
:param dists: a sequence of distances
:returns: an array of GMVs of shape (#mags, #dists)
"""
assert len(sitecol1) == 1, sitecol1
nmags, ndists = len(mags), len(dists)
gmv = numpy.zeros((nmags, ndists))
for m, d in itertools.product(range(nmags), range(ndists)):
mag, dist = mags[m], dists[d]
ctx = RuptureContext()
for par in self.REQUIRES_RUPTURE_PARAMETERS:
setattr(ctx, par, 0)
for dst in self.REQUIRES_DISTANCES:
setattr(ctx, dst, numpy.array([dist]))
for par in self.REQUIRES_SITES_PARAMETERS:
setattr(ctx, par, getattr(sitecol1, par))
ctx.sids = sitecol1.sids
ctx.mag = mag
ctx.width = .01 # 10 meters to avoid warnings in abrahamson_2014
try:
maxmean = self.get_mean_stds([ctx])[0].max()
# shape NM
except ValueError: # magnitude outside of supported range
continue
else:
gmv[m, d] = numpy.exp(maxmean)
return gmv
# not used by the engine, is is meant for notebooks
[docs] def get_poes(self, srcs, sitecol, tom=None, rup_mutex={},
collapse_level=-1):
"""
:param srcs: a list of sources with the same TRT
:param sitecol: a SiteCollection instance with N sites
:returns: an array of PoEs of shape (N, L, G)
"""
self.collapser.cfactor = numpy.zeros(3)
ctxs = self.from_srcs(srcs, sitecol)
with patch.object(self.collapser, 'collapse_level', collapse_level):
return self.get_pmap(ctxs, tom, rup_mutex).array
def _gen_poes(self, ctx):
from openquake.hazardlib.site_amplification import get_poes_site
(M, L1), G = self.loglevels.array.shape, len(self.gsims)
# split large context arrays to avoid filling the CPU cache
with self.gmf_mon:
# split_by_mag=False because already contains a single mag
mean_stdt = self.get_mean_stds([ctx], split_by_mag=False)
for slc in split_in_slices(len(ctx), MULTIPLIER):
ctxt = ctx[slc]
self.slc = slc # used in gsim/base.py
with self.poe_mon:
# this is allocating at most few MB of RAM
poes = numpy.zeros((len(ctxt), M*L1, G))
# NB: using .empty would break the MixtureModelGMPETestCase
for g, gsim in enumerate(self.gsims):
ms = mean_stdt[:2, g, :, slc]
# builds poes of shape (n, L, G)
if getattr(self.oq, 'af', None): # amplification method
poes[:, :, g] = get_poes_site(ms, self, ctxt)
else: # regular case
gsim.set_poes(ms, self, ctxt, poes[:, :, g])
yield poes
[docs] def gen_poes(self, ctx, rup_indep=True):
"""
:param ctx: a vectorized context (recarray) of size N
:param rup_indep: rupture flag (false for mutex ruptures)
:yields: poes, ctxt, invs with poes of shape (N, L, G)
"""
ctx.flags.writeable = True
ctx.mag = numpy.round(ctx.mag, 3)
for mag in numpy.unique(ctx.mag):
ctxt = ctx[ctx.mag == mag]
kctx, invs = self.collapser.collapse(ctxt, self.col_mon, rup_indep)
if invs is None: # no collapse
for poes in self._gen_poes(ctxt):
invs = numpy.arange(len(poes), dtype=U32)
yield poes, ctxt[self.slc], invs
else: # collapse
poes = numpy.concatenate(list(self._gen_poes(kctx)))
yield poes, ctxt, invs
# used in source_disagg
[docs] def get_pmap(self, ctxs, tom=None, rup_mutex={}):
"""
:param ctxs: a list of context arrays (only one for poissonian ctxs)
:param tom: temporal occurrence model (default PoissonTom)
:param rup_mutex: dictionary of weights (default empty)
:returns: a ProbabilityMap
"""
rup_indep = not rup_mutex
sids = numpy.unique(ctxs[0].sids)
pmap = ProbabilityMap(sids, size(self.imtls), len(self.gsims))
pmap.fill(rup_indep)
self.update(pmap, ctxs, tom or PoissonTOM(self.investigation_time),
rup_mutex)
return ~pmap if rup_indep else pmap
[docs] def update(self, pmap, ctxs, tom, rup_mutex={}):
"""
:param pmap: probability map to update
:param ctxs: a list of context arrays (only one for parametric ctxs)
:param rup_mutex: dictionary (src_id, rup_id) -> weight
The rup_mutex dictionary is read-only and normally empty
"""
rup_indep = len(rup_mutex) == 0
if tom is None:
itime = -1. # test_hazard_curve_X
elif isinstance(tom, FatedTOM):
itime = 0.
else:
itime = tom.time_span
for ctx in ctxs:
for poes, ctxt, invs in self.gen_poes(ctx, rup_indep):
with self.pne_mon:
ctxt.flags.writeable = True # avoid numba type error
pmap.update(poes, invs, ctxt, itime, rup_mutex)
# called by gen_poes and by the GmfComputer
[docs] def get_mean_stds(self, ctxs, split_by_mag=True):
"""
:param ctxs: a list of contexts with N=sum(len(ctx) for ctx in ctxs)
:param split_by_mag: where to split by magnitude
:returns: an array of shape (4, G, M, N) with mean and stddevs
"""
N = sum(len(ctx) for ctx in ctxs)
M = len(self.imts)
G = len(self.gsims)
out = numpy.zeros((4, G, M, N))
if all(isinstance(ctx, numpy.recarray) for ctx in ctxs):
# contexts already vectorized
recarrays = ctxs
else: # vectorize the contexts
recarrays = [self.recarray(ctxs)]
if split_by_mag:
recarr = numpy.concatenate(
recarrays, dtype=recarrays[0].dtype).view(numpy.recarray)
recarrays = split_array(recarr, U32(numpy.round(recarr.mag*100)))
self.adj = {gsim: [] for gsim in self.gsims} # NSHM2014P adjustments
for g, gsim in enumerate(self.gsims):
compute = gsim.__class__.compute
start = 0
for ctx in recarrays:
slc = slice(start, start + len(ctx))
# make the context immutable
ctx.flags.writeable = False
adj = compute(gsim, ctx, self.imts, *out[:, g, :, slc])
if adj is not None:
self.adj[gsim].append(adj)
start = slc.stop
if self.adj[gsim]:
self.adj[gsim] = numpy.concatenate(self.adj[gsim])
if self.truncation_level not in (0, 1E-9, 99.) and (
out[1, g] == 0.).any():
raise ValueError('Total StdDev is zero for %s' % gsim)
if self.conv: # apply horizontal component conversion
self.horiz_comp_to_geom_mean(out)
return out
[docs] def estimate_sites(self, src, sites):
"""
:param src: a (Collapsed)PointSource
:param sites: a filtered SiteCollection
:returns: how many sites are impacted overall
"""
magdist = {mag: self.maximum_distance(mag)
for mag, rate in src.get_annual_occurrence_rates()}
nphc = src.count_nphc()
dists = sites.get_cdist(src.location)
planardict = src.get_planar(iruptures=True)
esites = 0
for m, (mag, [planar]) in enumerate(planardict.items()):
rrup = dists[dists < magdist[mag]]
nclose = (rrup < src.get_psdist(m, mag, self.pointsource_distance,
magdist)).sum()
nfar = len(rrup) - nclose
esites += nclose * nphc + nfar
return esites
# tested in test_collapse_small
[docs] def estimate_weight(self, src, srcfilter, multiplier=1):
"""
:param src: a source object
:param srcfilter: a SourceFilter instance
:returns: (weight, estimate_sites)
"""
sites = srcfilter.get_close_sites(src)
if sites is None:
# may happen for CollapsedPointSources
return 0, 0
src.nsites = len(sites)
N = len(srcfilter.sitecol.complete) # total sites
if (hasattr(src, 'location') and src.count_nphc() > 1 and
self.pointsource_distance < 1000):
# cps or pointsource with nontrivial nphc
esites = self.estimate_sites(src, sites) * multiplier
else:
ctxs = list(self.get_ctx_iter(src, sites, step=10)) # reduced
if not ctxs:
return src.num_ruptures if N == 1 else 0, 0
esites = (sum(len(ctx) for ctx in ctxs) * src.num_ruptures /
self.num_rups * multiplier) # num_rups from get_ctx_iter
weight = esites / N # the weight is the effective number of ruptures
return weight, int(esites)
[docs] def set_weight(self, sources, srcfilter, multiplier=1, mon=Monitor()):
"""
Set the weight attribute on each prefiltered source
"""
if hasattr(srcfilter, 'array'): # a SiteCollection was passed
srcfilter = SourceFilter(srcfilter, self.maximum_distance)
G = len(self.gsims)
N = len(srcfilter.sitecol)
for src in sources:
if src.nsites == 0: # was discarded by the prefiltering
src.esites = 0
src.weight = .01
else:
with mon:
src.weight, src.esites = self.estimate_weight(
src, srcfilter, multiplier)
if src.weight == 0:
src.weight = 0.001
src.weight *= G
if src.code == b'P':
src.weight += .1
elif src.code == b'C':
src.weight += 10.
elif src.code == b'F':
if N <= self.max_sites_disagg:
src.weight *= 100 # superheavy
else:
src.weight += 30.
else:
src.weight += 1.
[docs]def by_dists(gsim):
return tuple(sorted(gsim.REQUIRES_DISTANCES))
# see contexts_tests.py for examples of collapse
# probs_occur = functools.reduce(combine_pmf, (r.probs_occur for r in rups))
[docs]def combine_pmf(o1, o2):
"""
Combine probabilities of occurrence; used to collapse nonparametric
ruptures.
:param o1: probability distribution of length n1
:param o2: probability distribution of length n2
:returns: probability distribution of length n1 + n2 - 1
>>> combine_pmf([.99, .01], [.98, .02])
array([9.702e-01, 2.960e-02, 2.000e-04])
"""
n1 = len(o1)
n2 = len(o2)
o = numpy.zeros(n1 + n2 - 1)
for i in range(n1):
for j in range(n2):
o[i + j] += o1[i] * o2[j]
return o
[docs]def print_finite_size(rups):
"""
Used to print the number of finite-size ruptures
"""
c = collections.Counter()
for rup in rups:
if rup.surface:
c['%.2f' % rup.mag] += 1
print(c)
print('total finite size ruptures = ', sum(c.values()))
[docs]class PmapMaker(object):
"""
A class to compute the PoEs from a given source
"""
def __init__(self, cmaker, srcfilter, group):
vars(self).update(vars(cmaker))
self.cmaker = cmaker
self.srcfilter = srcfilter
self.N = len(self.srcfilter.sitecol.complete)
try:
self.sources = group.sources
except AttributeError: # already a list of sources
self.sources = group
self.src_mutex = getattr(group, 'src_interdep', None) == 'mutex'
self.rup_indep = getattr(group, 'rup_interdep', None) != 'mutex'
if self.rup_indep:
self.rup_mutex = {}
else:
self.rup_mutex = {} # src_id, rup_id -> rup_weight
for src in group:
for i, (rup, _) in enumerate(src.data):
self.rup_mutex[src.id, i] = rup.weight
self.fewsites = self.N <= cmaker.max_sites_disagg
if hasattr(group, 'grp_probability'):
self.grp_probability = group.grp_probability
[docs] def count_bytes(self, ctxs):
# # usuful for debugging memory issues
rparams = len(self.cmaker.REQUIRES_RUPTURE_PARAMETERS)
sparams = len(self.cmaker.REQUIRES_SITES_PARAMETERS) + 1
dparams = len(self.cmaker.REQUIRES_DISTANCES)
nbytes = 0
for ctx in ctxs:
nsites = len(ctx)
nbytes += 8 * rparams
nbytes += 8 * sparams * nsites
nbytes += 8 * dparams * nsites
return nbytes
[docs] def gen_ctxs(self, src):
sites = self.srcfilter.get_close_sites(src)
if sites is None:
return
for ctx in self.cmaker.get_ctx_iter(src, sites):
if self.cmaker.deltagetter:
# adjust occurrence rates in case of aftershocks
with self.cmaker.delta_mon:
delta = self.cmaker.deltagetter(src.id)
ctx.occurrence_rate += delta[ctx.rup_id]
if self.fewsites: # keep rupdata in memory (before collapse)
self.rupdata.append(ctx)
yield ctx
def _make_src_indep(self, pmap):
# sources with the same ID
cm = self.cmaker
allctxs = []
ctxlen = 0
totlen = 0
M, G = len(self.imtls), len(self.gsims)
maxsize = get_maxsize(M, G)
t0 = time.time()
for src in self.sources:
tom = getattr(src, 'temporal_occurrence_model',
PoissonTOM(self.cmaker.investigation_time))
src.nsites = 0
for ctx in self.gen_ctxs(src):
ctxlen += len(ctx)
src.nsites += len(ctx)
totlen += len(ctx)
allctxs.append(ctx)
if ctxlen > maxsize:
cm.update(pmap, concat(allctxs), tom, self.rup_mutex)
allctxs.clear()
ctxlen = 0
if allctxs:
# assume all sources have the same tom
cm.update(pmap, concat(allctxs), tom, self.rup_mutex)
allctxs.clear()
dt = time.time() - t0
nsrcs = len(self.sources)
for src in self.sources:
self.source_data['src_id'].append(src.source_id)
self.source_data['grp_id'].append(src.grp_id)
self.source_data['nsites'].append(src.nsites)
self.source_data['esites'].append(src.esites)
self.source_data['nrupts'].append(src.num_ruptures)
self.source_data['weight'].append(src.weight)
self.source_data['ctimes'].append(
dt * src.nsites / totlen if totlen else dt / nsrcs)
self.source_data['taskno'].append(cm.task_no)
return pmap
def _make_src_mutex(self, pmap):
# used in the Japan model, test case_27
pmap_by_src = {}
cm = self.cmaker
for src in self.sources:
tom = getattr(src, 'temporal_occurrence_model',
PoissonTOM(self.cmaker.investigation_time))
t0 = time.time()
pm = ProbabilityMap(pmap.sids, cm.imtls.size, len(cm.gsims))
pm.fill(self.rup_indep)
ctxs = list(self.gen_ctxs(src))
nctxs = len(ctxs)
nsites = sum(len(ctx) for ctx in ctxs)
if nsites:
cm.update(pm, ctxs, tom, self.rup_mutex)
if hasattr(src, 'mutex_weight'):
arr = 1. - pm.array if self.rup_indep else pm.array
p = pm.new(arr * src.mutex_weight)
else:
p = pm
if ':' in src.source_id:
srcid = basename(src)
if srcid in pmap_by_src:
pmap_by_src[srcid].array += p.array
else:
pmap_by_src[srcid] = p
else:
pmap_by_src[src.source_id] = p
dt = time.time() - t0
self.source_data['src_id'].append(src.source_id)
self.source_data['grp_id'].append(src.grp_id)
self.source_data['nsites'].append(nsites)
self.source_data['esites'].append(src.esites)
self.source_data['nrupts'].append(nctxs)
self.source_data['weight'].append(src.weight)
self.source_data['ctimes'].append(dt)
self.source_data['taskno'].append(cm.task_no)
return pmap_by_src
[docs] def make(self, pmap):
dic = {}
self.rupdata = []
self.source_data = AccumDict(accum=[])
grp_id = self.sources[0].grp_id
if self.src_mutex or not self.rup_indep:
pmap.fill(0)
pmap_by_src = self._make_src_mutex(pmap)
for source_id, pm in pmap_by_src.items():
if self.src_mutex:
pmap.array += pm.array
else:
pmap.array = 1. - (1-pmap.array) * (1-pm.array)
if self.src_mutex:
pmap.array = self.grp_probability * pmap.array
else:
self._make_src_indep(pmap)
dic['cfactor'] = self.cmaker.collapser.cfactor
dic['rup_data'] = concat(self.rupdata)
dic['source_data'] = self.source_data
dic['task_no'] = self.task_no
dic['grp_id'] = grp_id
if self.disagg_by_src and self.src_mutex:
dic['pmap_by_src'] = pmap_by_src
elif self.disagg_by_src:
# all the sources in the group have the same source_id because
# of the groupby(group, basename) in classical.py
srcids = set(map(basename, self.sources))
assert len(srcids) == 1, srcids
dic['pmap_by_src'] = {srcids.pop(): pmap}
return dic
[docs]class BaseContext(metaclass=abc.ABCMeta):
"""
Base class for context object.
"""
def __eq__(self, other):
"""
Return True if ``other`` has same attributes with same values.
"""
if isinstance(other, self.__class__):
if self._slots_ == other._slots_:
oks = []
for s in self._slots_:
a, b = getattr(self, s, None), getattr(other, s, None)
if a is None and b is None:
ok = True
elif a is None and b is not None:
ok = False
elif a is not None and b is None:
ok = False
elif hasattr(a, 'shape') and hasattr(b, 'shape'):
if a.shape == b.shape:
ok = numpy.allclose(a, b)
else:
ok = False
else:
ok = a == b
oks.append(ok)
return numpy.all(oks)
return False
# mock of a site collection used in the tests and in the SMTK
[docs]class SitesContext(BaseContext):
"""
Sites calculation context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant features of the sites collection.
Every GSIM class is required to declare what :attr:`sites parameters
<GroundShakingIntensityModel.REQUIRES_SITES_PARAMETERS>` does it need.
Only those required parameters are made available in a result context
object.
"""
# _slots_ is used in hazardlib check_gsim and in the SMTK
def __init__(self, slots='vs30 vs30measured z1pt0 z2pt5'.split(),
sitecol=None):
self._slots_ = slots
if sitecol is not None:
self.sids = sitecol.sids
for slot in slots:
setattr(self, slot, getattr(sitecol, slot))
# used in the SMTK
def __len__(self):
return len(self.sids)
[docs]class DistancesContext(BaseContext):
"""
Distances context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant distances between sites from the collection
and the rupture. Every GSIM class is required to declare what
:attr:`distance measures <GroundShakingIntensityModel.REQUIRES_DISTANCES>`
does it need. Only those required values are calculated and made available
in a result context object.
"""
_slots_ = ('rrup', 'rx', 'rjb', 'rhypo', 'repi', 'ry0', 'rcdpp',
'azimuth', 'hanging_wall', 'rvolc')
def __init__(self, param_dist_pairs=()):
for param, dist in param_dist_pairs:
setattr(self, param, dist)
[docs] def roundup(self, minimum_distance):
"""
If the minimum_distance is nonzero, returns a copy of the
DistancesContext with updated distances, i.e. the ones below
minimum_distance are rounded up to the minimum_distance. Otherwise,
returns the original DistancesContext unchanged.
"""
if not minimum_distance:
return self
ctx = DistancesContext()
for dist, array in vars(self).items():
small_distances = array < minimum_distance
if small_distances.any():
array = numpy.array(array) # make a copy first
array[small_distances] = minimum_distance
array.flags.writeable = False
setattr(ctx, dist, array)
return ctx
[docs]def get_dists(ctx):
"""
Extract the distance parameters from a context.
:returns: a dictionary dist_name -> distances
"""
return {par: dist for par, dist in vars(ctx).items()
if par in KNOWN_DISTANCES}
# used to produce a RuptureContext suitable for legacy code, i.e. for calls
# to .get_mean_and_stddevs, like for instance in the SMTK
[docs]def full_context(sites, rup, dctx=None):
"""
:returns: a full RuptureContext with all the relevant attributes
"""
self = RuptureContext()
self.src_id = 0
for par, val in vars(rup).items():
setattr(self, par, val)
if not hasattr(self, 'occurrence_rate'):
self.occurrence_rate = numpy.nan
if hasattr(sites, 'array'): # is a SiteCollection
for par in sites.array.dtype.names:
setattr(self, par, sites[par])
else: # sites is a SitesContext
for par, val in vars(sites).items():
setattr(self, par, val)
if dctx:
for par, val in vars(dctx).items():
setattr(self, par, val)
return self
[docs]def get_mean_stds(gsim, ctx, imts, **kw):
"""
:param gsim: a single GSIM or a a list of GSIMs
:param ctx: a RuptureContext or a recarray of size N with same magnitude
:param imts: a list of M IMTs
:param kw: additional keyword arguments
:returns:
an array of shape (4, M, N) obtained by applying the
given GSIM, ctx amd imts, or an array of shape (G, 4, M, N)
"""
single = hasattr(gsim, 'compute')
kw['imtls'] = {imt.string: [0] for imt in imts}
cmaker = ContextMaker('*', [gsim] if single else gsim, kw)
out = cmaker.get_mean_stds([ctx], split_by_mag=False) # (4, G, M, N)
return out[:, 0] if single else out
# mock of a rupture used in the tests and in the SMTK
[docs]class RuptureContext(BaseContext):
"""
Rupture calculation context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant features of a single rupture. Every
GSIM class is required to declare what :attr:`rupture parameters
<GroundShakingIntensityModel.REQUIRES_RUPTURE_PARAMETERS>` does it need.
Only those required parameters are made available in a result context
object.
"""
src_id = 0
rup_id = 0
_slots_ = (
'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat',
'hypo_depth', 'width', 'hypo_loc', 'src_id', 'rup_id')
def __init__(self, param_pairs=()):
for param, value in param_pairs:
setattr(self, param, value)
[docs] def size(self):
"""
If the context is a multi rupture context, i.e. it contains an array
of magnitudes and it refers to a single site, returns the size of
the array, otherwise returns 1.
"""
nsites = len(self.sids)
if nsites == 1 and isinstance(self.mag, numpy.ndarray):
return len(self.mag)
return nsites
# used in acme_2019
def __len__(self):
return len(self.sids)
[docs] def roundup(self, minimum_distance):
"""
If the minimum_distance is nonzero, returns a copy of the
RuptureContext with updated distances, i.e. the ones below
minimum_distance are rounded up to the minimum_distance. Otherwise,
returns the original.
"""
if not minimum_distance:
return self
ctx = copy.copy(self)
for dist, array in vars(self).items():
if dist in KNOWN_DISTANCES:
small_distances = array < minimum_distance
if small_distances.any():
array = numpy.array(array) # make a copy first
array[small_distances] = minimum_distance
array.flags.writeable = False
setattr(ctx, dist, array)
return ctx
[docs]class Effect(object):
"""
Compute the effect of a rupture of a given magnitude and distance.
:param effect_by_mag: a dictionary magstring -> intensities
:param dists: array of distances, one per each intensity
:param cdist: collapse distance
"""
def __init__(self, effect_by_mag, dists, collapse_dist=None):
self.effect_by_mag = effect_by_mag
self.dists = dists
self.nbins = len(dists)
[docs] def collapse_value(self, collapse_dist):
"""
:returns: intensity at collapse distance
"""
# get the maximum magnitude with a cutoff at 7
for mag in self.effect_by_mag:
if mag > '7.00':
break
effect = self.effect_by_mag[mag]
idx = numpy.searchsorted(self.dists, collapse_dist)
return effect[idx-1 if idx == self.nbins else idx]
def __call__(self, mag, dist):
di = numpy.searchsorted(self.dists, dist)
if di == self.nbins:
di = self.nbins
eff = self.effect_by_mag['%.2f' % mag][di]
return eff
# this is used to compute the magnitude-dependent pointsource_distance
[docs] def dist_by_mag(self, intensity):
"""
:returns: a dict magstring -> distance
"""
dst = {} # magnitude -> distance
for mag, intensities in self.effect_by_mag.items():
if intensity < intensities.min():
dst[mag] = self.dists[-1] # largest distance
elif intensity > intensities.max():
dst[mag] = self.dists[0] # smallest distance
else:
dst[mag] = interp1d(intensities, self.dists)(intensity)
return dst
[docs]def get_effect_by_mag(mags, sitecol1, gsims_by_trt, maximum_distance, imtls):
"""
:param mags: an ordered list of magnitude strings with format %.2f
:param sitecol1: a SiteCollection with a single site
:param gsims_by_trt: a dictionary trt -> gsims
:param maximum_distance: an IntegrationDistance object
:param imtls: a DictArray with intensity measure types and levels
:returns: a dict magnitude-string -> array(#dists, #trts)
"""
trts = list(gsims_by_trt)
ndists = 51
gmv = numpy.zeros((len(mags), ndists, len(trts)))
param = dict(maximum_distance=maximum_distance, imtls=imtls)
for t, trt in enumerate(trts):
dist_bins = maximum_distance.get_dist_bins(trt, ndists)
cmaker = ContextMaker(trt, gsims_by_trt[trt], param)
gmv[:, :, t] = cmaker.max_intensity(sitecol1, F64(mags), dist_bins)
return dict(zip(mags, gmv))
[docs]def get_cmakers(src_groups, full_lt, oq):
"""
:params src_groups: a list of SourceGroups
:param full_lt: a FullLogicTree instance
:param oq: object containing the calculation parameters
:returns: list of ContextMakers associated to the given src_groups
"""
all_trt_smrs = []
for sg in src_groups:
src = sg.sources[0]
all_trt_smrs.append(src.trt_smrs)
trts = list(full_lt.gsim_lt.values)
cmakers = []
for grp_id, trt_smrs in enumerate(all_trt_smrs):
rlzs_by_gsim = full_lt.get_rlzs_by_gsim(trt_smrs)
if not rlzs_by_gsim: # happens for gsim_lt.reduce() on empty TRTs
continue
trti = trt_smrs[0] // TWO24
cmaker = ContextMaker(trts[trti], rlzs_by_gsim, oq)
cmaker.trti = trti
cmaker.trt_smrs = trt_smrs
cmaker.grp_id = grp_id
cmakers.append(cmaker)
gids = full_lt.get_gids(cm.trt_smrs for cm in cmakers)
for cm in cmakers:
cm.gid = gids[cm.grp_id]
return cmakers
[docs]def read_cmakers(dstore, csm=None):
"""
:param dstore: a DataStore-like object
:param csm: a CompositeSourceModel instance, if given
:returns: a list of ContextMaker instances, one per source group
"""
from openquake.hazardlib.site_amplification import AmplFunction
oq = dstore['oqparam']
oq.mags_by_trt = {
k: decode(v[:]) for k, v in dstore['source_mags'].items()}
if 'amplification' in oq.inputs and oq.amplification_method == 'kernel':
df = AmplFunction.read_df(oq.inputs['amplification'])
oq.af = AmplFunction.from_dframe(df)
else:
oq.af = None
if csm is None:
csm = dstore['_csm']
csm.full_lt = dstore['full_lt'].init()
cmakers = get_cmakers(csm.src_groups, csm.full_lt, oq)
if 'delta_rates' in dstore: # aftershock
for cmaker in cmakers:
cmaker.deltagetter = DeltaRatesGetter(dstore)
return cmakers
# used in event_based
[docs]def read_cmaker(dstore, trt_smr):
"""
:param dstore: a DataStore-like object
:returns: a ContextMaker instance
"""
oq = dstore['oqparam']
full_lt = dstore['full_lt']
trts = list(full_lt.gsim_lt.values)
trt = trts[trt_smr // len(full_lt.sm_rlzs)]
rlzs_by_gsim = full_lt._rlzs_by_gsim(trt_smr)
return ContextMaker(trt, rlzs_by_gsim, oq)
[docs]def read_src_mutex(dstore):
"""
:param dstore: a DataStore-like object
:returns: a dictionary grp_id -> {'src_id': [...], 'weight': [...]}
"""
info = dstore.read_df('source_info')
mutex_df = info[info.mutex_weight > 0][['grp_id', 'mutex_weight']]
return {grp_id: {'src_id': df.index.to_numpy(),
'weight': df.mutex_weight.to_numpy()}
for grp_id, df in mutex_df.groupby('grp_id')}
[docs]def get_src_mutex(srcs):
"""
:param srcs: a list of sources with weights and the same grp_id
:returns: a dictionary grp_id -> {'src_id': [...], 'weight': [...]}
"""
grp_ids = [src.grp_id for src in srcs]
[grp_id] = set(grp_ids)
ok = all(hasattr(src, 'mutex_weight') for src in srcs)
if not ok:
return {grp_id: {}}
dic = dict(src_ids=U32([src.id for src in srcs]),
weights=F64([src.mutex_weight for src in srcs]))
return {grp_id: dic}
[docs]def read_ctx_by_grp(dstore):
"""
:param dstore: DataStore instance
:returns: dictionary grp_id -> ctx
"""
sitecol = dstore['sitecol'].complete.array
params = {n: dstore['rup/' + n][:] for n in dstore['rup']}
dtlist = []
for par, val in params.items():
if len(val) == 0:
return []
elif par == 'probs_occur':
item = (par, object)
elif par == 'occurrence_rate':
item = (par, F64)
else:
item = (par, val[0].dtype)
dtlist.append(item)
for par in sitecol.dtype.names:
if par != 'sids':
dtlist.append((par, sitecol.dtype[par]))
ctx = numpy.zeros(len(params['grp_id']), dtlist).view(numpy.recarray)
for par, val in params.items():
ctx[par] = val
for par in sitecol.dtype.names:
if par != 'sids':
ctx[par] = sitecol[par][ctx.sids]
grp_ids = numpy.unique(ctx.grp_id)
return {grp_id: ctx[ctx.grp_id == grp_id] for grp_id in grp_ids}