Source code for openquake.hmtk.seismicity.occurrence.weichert

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

import warnings
import numpy as np
from openquake.hmtk.seismicity.occurrence.base import (
    SeismicityOccurrence,
    OCCURRENCE_METHODS,
)
from openquake.hmtk.seismicity.occurrence.utils import (
    input_checks,
    get_completeness_counts,
)


[docs]@OCCURRENCE_METHODS.add( "calculate", completeness=True, reference_magnitude=0.0, magnitude_interval=0.1, bvalue=1.0, itstab=1e-5, maxiter=1000, ) class Weichert(SeismicityOccurrence): """Class to Implement Weichert Algorithm"""
[docs] def calculate(self, catalogue, config, completeness=None): """Calculates b value and rate for mag ref""" bval, sigma_b, rate, sigma_rate, _aval, _sigma_a = self._calculate( catalogue, config, completeness ) return bval, sigma_b, rate, sigma_rate
[docs] def calc(self, catalogue, config, completeness=None): """Calculates GR params""" bval, sigma_b, _rate, _sigma_rate, aval, sigma_a = self._calculate( catalogue, config, completeness ) return bval, sigma_b, aval, sigma_a
def _calculate(self, catalogue, config, completeness=None): """Calculates a, b values + rate for mag ref""" # Input checks cmag, ctime, ref_mag, _, config = input_checks( catalogue, config, completeness ) if "dtime" not in catalogue.data.keys() or not len( catalogue.data["dtime"] ): catalogue.data["dtime"] = catalogue.get_decimal_time() if not catalogue.end_year: catalogue.update_end_year() if completeness is None: # start_year = float(np.min(catalogue.data["year"])) completeness = np.column_stack([ctime, cmag]) # Apply Weichert preparation cent_mag, t_per, n_obs = get_completeness_counts( catalogue, completeness, config["magnitude_interval"] ) # A few more Weichert checks key_list = config.keys() if ("bvalue" not in key_list) or (not config["bvalue"]): config["bvalue"] = 1.0 if ("itstab" not in key_list) or (not config["itstab"]): config["itstab"] = 1e-5 if ("maxiter" not in key_list) or (not config["maxiter"]): config["maxiter"] = 1000 bval, sigma_b, rate, sigma_rate, fn0, stdfn0 = self.weichert_algorithm( t_per, cent_mag, n_obs, ref_mag, config["bvalue"], config["itstab"], config["maxiter"], ) # if not config['reference_magnitude']: agr = np.log10(fn0) agr_sigma = np.log10(fn0 + stdfn0) - np.log10(fn0) return bval, sigma_b, rate, sigma_rate, agr, agr_sigma
[docs] def weichert_algorithm( self, tper, fmag, nobs, mrate=0.0, bval=1.0, itstab=1e-5, maxiter=1000 ): """ Weichert algorithm :param tper: length of observation period corresponding to magnitude :type tper: numpy.ndarray (float) :param fmag: central magnitude :type fmag: numpy.ndarray (float) :param nobs: number of events in magnitude increment :type nobs: numpy.ndarray (int) :keyword mrate: reference magnitude :type mrate: float :keyword bval: initial value for b-value :type beta: float :keyword itstab: stabilisation tolerance :type itstab: float :keyword maxiter: Maximum number of iterations :type maxiter: Int :returns: b-value, sigma_b, a-value, sigma_a :rtype: float """ beta = bval * np.log(10.0) d_m = fmag[1] - fmag[0] itbreak = 0 snm = np.sum(nobs * fmag) nkount = np.sum(nobs) iteration = 1 while itbreak != 1: beta_exp = np.exp(-beta * fmag) tjexp = tper * beta_exp tmexp = tjexp * fmag sumexp = np.sum(beta_exp) stmex = np.sum(tmexp) sumtex = np.sum(tjexp) stm2x = np.sum(fmag * tmexp) dldb = stmex / sumtex if np.isnan(stmex) or np.isnan(sumtex): warnings.warn("NaN occurs in Weichert iteration") return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan # raise ValueError('NaN occers in Weichert iteration') d2ldb2 = nkount * ((dldb**2.0) - (stm2x / sumtex)) dldb = (dldb * nkount) - snm betl = np.copy(beta) beta = beta - (dldb / d2ldb2) sigbeta = np.sqrt(-1.0 / d2ldb2) if np.abs(beta - betl) <= itstab: # Iteration has reached convergence bval = beta / np.log(10.0) sigb = sigbeta / np.log(10.0) fngtm0 = nkount * (sumexp / sumtex) fn0 = fngtm0 * np.exp((beta) * (fmag[0] - (d_m / 2.0))) stdfn0 = fn0 / np.sqrt(nkount) a_m = fngtm0 * np.exp( (-beta) * (mrate - (fmag[0] - (d_m / 2.0))) ) siga_m = a_m / np.sqrt(nkount) itbreak = 1 else: iteration += 1 if iteration > maxiter: warnings.warn("Maximum Number of Iterations reached") return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan return bval, sigb, a_m, siga_m, fn0, stdfn0