Source code for openquake.hmtk.seismicity.max_magnitude.kijko_sellevol_bayes

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani, D. Monelli
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is free software: you can
# redistribute it and/or modify it under the terms of the GNU Affero General
# Public License as published by the Free Software Foundation, either version 3
# of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein is
# released as a prototype implementation on behalf of scientists and engineers
# working within the GEM Foundation (Global Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the hope that
# it will be useful to the scientific, engineering, disaster risk and software
# design communities.
#
# The software is NOT distributed as part of GEM's OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software developers,
# as GEM's OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be directed to
# the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# The GEM Foundation, and the authors of the software, assume no liability for
# use of the software.

"""
Module :mod:`openquake.hmtk.seismicity.max_magnitude.kijko_sellevol_bayes`
implements the Kijko & Sellevol (1989) method for estimating maximum magnitude
from observed seismicity with uncertain b-value
"""

import numpy as np
from math import fabs
from scipy.integrate import quadrature
from openquake.hmtk.seismicity.max_magnitude.base import (
    BaseMaximumMagnitude,
    MAX_MAGNITUDE_METHODS,
    _get_observed_mmax,
    _get_magnitude_vector_properties,
)


[docs]def check_config(config, data): """Check config file inputs :param dict config: Configuration settings for the function """ essential_keys = ["input_mmin", "b-value", "sigma-b"] for key in essential_keys: if key not in config: raise ValueError( "For KijkoSellevolBayes the key %s needs to " "be set in the configuation" % key ) if "tolerance" not in config.keys() or not config["tolerance"]: config["tolerance"] = 1e-5 if not config.get("maximum_iterations", False): config["maximum_iterations"] = 1000 if config["input_mmin"] < np.min(data["magnitude"]): config["input_mmin"] = np.min(data["magnitude"]) if fabs(config["sigma-b"] < 1e-15): raise ValueError("Sigma-b must be greater than zero!") return config
[docs]@MAX_MAGNITUDE_METHODS.add( "get_mmax", **{ "input_mmin": lambda cat: np.min(cat.data["magnitude"]), "input_mmax": lambda cat: cat.data["magnitude"][ np.argmax(cat.data["magnitude"]) ], "input_mmax_uncertainty": lambda cat: cat.get_observed_mmax_sigma(0.2), "b-value": float, "sigma-b": float, "maximum_iterations": 1000, "tolerance": 1e-5, }, ) class KijkoSellevolBayes(BaseMaximumMagnitude): """ Class to implement Kijko & Sellevol Bayesian estimator of Mmax, with uncertain b-value """
[docs] def get_mmax(self, catalogue, config): """Calculate maximum magnitude :returns: **mmax** Maximum magnitude and **mmax_sig** corresponding uncertainty :rtype: Float """ # Check configuration file config = check_config(config, catalogue.data) # Negative b-values will return nan - this simply skips the integral if config["b-value"] <= 0.0: return np.nan, np.nan obsmax, obsmaxsig = _get_observed_mmax(catalogue.data, config) beta = config["b-value"] * np.log(10.0) sigbeta = config["sigma-b"] * np.log(10.0) neq, mmin = _get_magnitude_vector_properties(catalogue.data, config) pval = beta / (sigbeta**2.0) qval = (beta / sigbeta) ** 2.0 mmax = np.copy(obsmax) d_t = np.inf iterator = 0 while d_t > config["tolerance"]: rval = pval / (pval + mmax - mmin) ldelt = (1.0 / (1.0 - (rval**qval))) ** neq delta = ( ldelt * quadrature( self._ksb_intfunc, mmin, mmax, args=(neq, mmin, pval, qval) )[0] ) tmmax = obsmax + delta d_t = np.abs(tmmax - mmax) mmax = np.copy(tmmax) iterator += 1 if iterator > config["maximum_iterations"]: print( "Kijko-Sellevol-Bayes estimator reached" "maximum # of iterations" ) d_t = -np.inf return mmax.item(), np.sqrt(obsmaxsig**2.0 + delta**2.0)
def _ksb_intfunc(self, mval, neq, mmin, pval, qval): """ Integral function inside Kijko-Sellevol-Bayes estimator (part of Eq. 10 in Kijko, 2004 - section 3.2) :param float mval: Magnitude :param float neq: Number of Earthquakes :param float mmin: Minimum Magnitude :param float pval: p-value (see Kijko, 2004 - section 3.2) :param float qval: q-value (see Kijki, 2004 - section 3.2) :returns: Output of function integrand """ func1 = (1.0 - ((pval / (pval + mval - mmin)) ** qval)) ** neq return func1