Source code for openquake.hmtk.seismicity.catalogue

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

"""
Prototype of a 'Catalogue' class
"""

import csv
import numpy as np
from openquake.hazardlib.pmf import PMF
from openquake.hazardlib.geo.mesh import Mesh
from openquake.hazardlib.geo.utils import spherical_to_cartesian
from openquake.hmtk.seismicity.utils import (
    decimal_time,
    bootstrap_histogram_1D,
    bootstrap_histogram_2D,
)


[docs]class Catalogue(object): """ General Catalogue Class """ FLOAT_ATTRIBUTE_LIST = [ "second", "timeError", "longitude", "latitude", "SemiMajor90", "SemiMinor90", "ErrorStrike", "depth", "depthError", "magnitude", "sigmaMagnitude", ] INT_ATTRIBUTE_LIST = ["year", "month", "day", "hour", "minute", "flag"] STRING_ATTRIBUTE_LIST = ["eventID", "Agency", "magnitudeType", "comment"] TOTAL_ATTRIBUTE_LIST = list( (set(FLOAT_ATTRIBUTE_LIST).union(set(INT_ATTRIBUTE_LIST))).union( set(STRING_ATTRIBUTE_LIST) ) ) SORTED_ATTRIBUTE_LIST = [ "eventID", "Agency", "year", "month", "day", "hour", "minute", "second", "timeError", "longitude", "latitude", "SemiMajor90", "SemiMinor90", "ErrorStrike", "depth", "depthError", "magnitude", "sigmaMagnitude", "magnitudeType", ] def __init__(self): """ Initialise the catalogue dictionary """ self.data = {} self.end_year = None self.start_year = None self.processes = { "declustering": None, "completeness": None, "recurrence": None, "Poisson Tests": None, } for attribute in self.TOTAL_ATTRIBUTE_LIST: if attribute in self.FLOAT_ATTRIBUTE_LIST: self.data[attribute] = np.array([], dtype=float) elif attribute in self.INT_ATTRIBUTE_LIST: self.data[attribute] = np.array([], dtype=int) else: self.data[attribute] = [] self.number_earthquakes = 0
[docs] def get_number_events(self): return len(self.data["eventID"])
def __len__(self): return self.get_number_events() def __str__(self): """ Returns a shortened print of the catalogue """ neq = self.get_number_events() if not neq: return "<Catalogue Object>No events" elif neq > 20: # Too many events to print, show 1st 10 and last 10 row_set = ["<Catalogue Object>{:g} events".format(neq)] for i in range(10): row_set.append(self._get_row_str(i)) row_set.append("...") for i in range(-10, 0, 1): row_set.append(self._get_row_str(i)) else: # Show all events row_set = ["<Catalogue Object>{:g} events".format(neq)] for i in range(neq): row_set.append(self._get_row_str(i)) return "\n".join(row_set) def _get_row_str(self, i): """ Returns a string representation of the key information in a row """ row_data = [ "{:s}".format(self.data["eventID"][i]), "{:g}".format(self.data["year"][i]), "{:g}".format(self.data["month"][i]), "{:g}".format(self.data["day"][i]), "{:g}".format(self.data["hour"][i]), "{:g}".format(self.data["minute"][i]), "{:.1f}".format(self.data["second"][i]), "{:.3f}".format(self.data["longitude"][i]), "{:.3f}".format(self.data["latitude"][i]), "{:.1f}".format(self.data["depth"][i]), "{:.1f}".format(self.data["magnitude"][i]), ] return " ".join(row_data) def __getitem__(self, key): """ If the key is provided as an int, return a data for that index, otherwise if it is a string then return the data column """ if isinstance(key, int): # Gets the row specied row = [] for attr in self.SORTED_ATTRIBUTE_LIST: if len(self.data[attr]): row.append(self.data[attr][key]) else: # For empty columns just append None row.append(None) return row elif isinstance(key, str): return self.data[key] else: raise ValueError("__getitem__ requires integer or string") def __iter__(self): """ Iteration yields for each event a list of data """ for i in range(len(self)): row = [] for key in self.SORTED_ATTRIBUTE_LIST: if len(self.data[key]): row.append(self.data[key][i]) else: # For empty columns just append None row.append(None) yield row
[docs] def add_event(self): raise NotImplementedError
[docs] def write_catalogue(self, output_file, key_list=SORTED_ATTRIBUTE_LIST): """ Writes the catalogue to file using HTMK format (CSV). :param output_file: Name of the output file :param key_list: Optional list of attribute keys to be exported """ with open(output_file, "w") as of: writer = csv.DictWriter(of, fieldnames=key_list) writer.writeheader() for i in range(self.get_number_events()): row_dict = {} for key in key_list: if len(self.data[key]) > 0: data = self.data[key][i] if key in self.INT_ATTRIBUTE_LIST: if np.isnan(data): data = "" else: data = int(data) if key in self.FLOAT_ATTRIBUTE_LIST: if np.isnan(data): data = "" else: data = float(data) row_dict[key] = data writer.writerow(row_dict)
[docs] def load_to_array(self, keys): """ This loads the data contained in the catalogue into a numpy array. The method works only for float data :param keys: A list of keys to be uploaded into the array :type list: """ # Preallocate the numpy array data = np.empty((len(self.data[keys[0]]), len(keys))) for i in range(0, len(self.data[keys[0]])): for j, key in enumerate(keys): data[i, j] = self.data[key][i] return data
[docs] def load_from_array(self, keys, data_array): """ This loads the data contained in an array into the catalogue object :param keys: A list of keys explaining the content of the columns in the array :type list: """ if len(keys) != np.shape(data_array)[1]: raise ValueError("Key list does not match shape of array!") for i, key in enumerate(keys): if key in self.INT_ATTRIBUTE_LIST: self.data[key] = data_array[:, i].astype(int) else: self.data[key] = data_array[:, i] if key not in self.TOTAL_ATTRIBUTE_LIST: print("Key %s not a recognised catalogue attribute" % key) self.update_end_year()
[docs] @classmethod def make_from_dict(cls, data): cat = cls() cat.data = data cat.update_end_year() return cat
[docs] def update_end_year(self): """ NOTE: To be called only when the catalogue is loaded (not when it is modified by declustering or completeness-based filtering) """ self.end_year = np.max(self.data["year"])
[docs] def update_start_year(self): """ NOTE: To be called only when the catalogue is loaded (not when it is modified by declustering or completeness-based filtering) """ self.start_year = np.min(self.data["year"])
[docs] def catalogue_mt_filter(self, mt_table, flag=None): """ Filter the catalogue using a magnitude-time table. The table has two columns and n-rows. :param nump.ndarray mt_table: Magnitude time table with n-rows where column 1 is year and column 2 is magnitude """ if flag is None: # No flag defined, therefore all events are initially valid flag = np.ones(self.get_number_events(), dtype=bool) for comp_val in mt_table: id0 = np.logical_and( self.data["year"].astype(float) < comp_val[0], self.data["magnitude"] < comp_val[1], ) print(id0) flag[id0] = False if not np.all(flag): self.purge_catalogue(flag)
[docs] def get_bounding_box(self): """ Returns the bounding box of the catalogue :returns: (West, East, South, North) """ return ( np.min(self.data["longitude"]), np.max(self.data["longitude"]), np.min(self.data["latitude"]), np.max(self.data["latitude"]), )
[docs] def get_observed_mmax_sigma(self, default=None): """ :returns: the sigma for the maximum observed magnitude """ if not isinstance(self.data["sigmaMagnitude"], np.ndarray): obsmaxsig = default else: obsmaxsig = self.data["sigmaMagnitude"][ np.argmax(self.data["magnitude"]) ] return obsmaxsig
[docs] def get_decimal_time(self): """ Returns the time of the catalogue as a decimal """ return decimal_time( self.data["year"], self.data["month"], self.data["day"], self.data["hour"], self.data["minute"], self.data["second"], )
[docs] def hypocentres_as_mesh(self): """ Render the hypocentres to a nhlib.geo.mesh.Mesh object """ return Mesh( self.data["longitude"], self.data["latitude"], self.data["depth"] )
[docs] def hypocentres_to_cartesian(self): """ Render the hypocentres to a cartesian array """ return spherical_to_cartesian( self.data["longitude"], self.data["latitude"], self.data["depth"] )
[docs] def sort_catalogue_chronologically(self): """ Sorts the catalogue into chronological order """ dec_time = self.get_decimal_time() idx = np.argsort(dec_time) if np.all((idx[1:] - idx[:-1]) > 0.0): # Catalogue was already in chronological order return self.select_catalogue_events(idx)
[docs] def purge_catalogue(self, flag_vector): """ Purges present catalogue with invalid events defined by flag_vector :param numpy.ndarray flag_vector: Boolean vector showing if events are selected (True) or not (False) """ id0 = np.where(flag_vector)[0] self.select_catalogue_events(id0) self.get_number_events()
[docs] def select_catalogue_events(self, id0): """ Orders the events in the catalogue according to an indexing vector. :param np.ndarray id0: Pointer array indicating the locations of selected events """ for key in self.data: if ( isinstance(self.data[key], np.ndarray) and len(self.data[key]) > 0 ): # Dictionary element is numpy array - use logical indexing self.data[key] = self.data[key][id0] elif isinstance(self.data[key], list) and len(self.data[key]) > 0: # Dictionary element is list self.data[key] = [self.data[key][iloc] for iloc in id0] else: continue
[docs] def get_depth_distribution( self, depth_bins, normalisation=False, bootstrap=None ): """ Gets the depth distribution of the earthquake catalogue to return a single histogram. Depths may be normalised. If uncertainties are found in the catalogue the distrbution may be bootstrap sampled :param numpy.ndarray depth_bins: getBin edges for the depths :param bool normalisation: Choose to normalise the results such that the total contributions sum to 1.0 (True) or not (False) :param int bootstrap: Number of bootstrap samples :returns: Histogram of depth values """ if len(self.data["depth"]) == 0: # If depth information is missing raise ValueError("Depths missing in catalogue") if len(self.data["depthError"]) == 0: self.data["depthError"] = np.zeros( self.get_number_events(), dtype=float ) return bootstrap_histogram_1D( self.data["depth"], depth_bins, self.data["depthError"], normalisation=normalisation, number_bootstraps=bootstrap, boundaries=(0.0, None), )
[docs] def get_depth_pmf(self, depth_bins, default_depth=5.0, bootstrap=None): """ Returns the depth distribution of the catalogue as a probability mass function """ if len(self.data["depth"]) == 0: # If depth information is missing return PMF([(1.0, default_depth)]) # Get the depth distribution depth_hist = self.get_depth_distribution( depth_bins, normalisation=True, bootstrap=bootstrap ) # If the histogram does not sum to 1.0 then remove the difference # from the lowest bin depth_hist = np.around(depth_hist, 3) while depth_hist.sum() - 1.0: depth_hist[-1] -= depth_hist.sum() - 1.0 depth_hist = np.around(depth_hist, 3) pmf_list = [] for iloc, prob in enumerate(depth_hist): pmf_list.append( (prob, (depth_bins[iloc] + depth_bins[iloc + 1]) / 2.0) ) return PMF(pmf_list)
[docs] def get_magnitude_depth_distribution( self, magnitude_bins, depth_bins, normalisation=False, bootstrap=None ): """ Returns a 2-D magnitude-depth histogram for the catalogue :param numpy.ndarray magnitude_bins: Bin edges for the magnitudes :param numpy.ndarray depth_bins: Bin edges for the depths :param bool normalisation: Choose to normalise the results such that the total contributions sum to 1.0 (True) or not (False) :param int bootstrap: Number of bootstrap samples :returns: 2D histogram of events in magnitude-depth bins """ if len(self.data["depth"]) == 0: # If depth information is missing raise ValueError("Depths missing in catalogue") if len(self.data["depthError"]) == 0: self.data["depthError"] = np.zeros( self.get_number_events(), dtype=float ) if len(self.data["sigmaMagnitude"]) == 0: self.data["sigmaMagnitude"] = np.zeros( self.get_number_events(), dtype=float ) return bootstrap_histogram_2D( self.data["magnitude"], self.data["depth"], magnitude_bins, depth_bins, boundaries=[(0.0, None), (None, None)], xsigma=self.data["sigmaMagnitude"], ysigma=self.data["depthError"], normalisation=normalisation, number_bootstraps=bootstrap, )
[docs] def get_magnitude_time_distribution( self, magnitude_bins, time_bins, normalisation=False, bootstrap=None ): """ Returns a 2-D histogram indicating the number of earthquakes in a set of time-magnitude bins. Time is in decimal years! :param numpy.ndarray magnitude_bins: Bin edges for the magnitudes :param numpy.ndarray time_bins: Bin edges for the times :param bool normalisation: Choose to normalise the results such that the total contributions sum to 1.0 (True) or not (False) :param int bootstrap: Number of bootstrap samples :returns: 2D histogram of events in magnitude-year bins """ return bootstrap_histogram_2D( self.get_decimal_time(), self.data["magnitude"], time_bins, magnitude_bins, xsigma=np.zeros(self.get_number_events()), ysigma=self.data["sigmaMagnitude"], normalisation=normalisation, number_bootstraps=bootstrap, )
[docs] def concatenate(self, catalogue): """ This method attaches one catalogue to the current one :parameter catalogue: An instance of :class:`htmk.seismicity.catalogue.Catalogue` """ atts = getattr(self, "data") attn = getattr(catalogue, "data") data = _merge_data(atts, attn) if data is not None: setattr(self, "data", data) for attrib in vars(self): atts = getattr(self, attrib) attn = getattr(catalogue, attrib) if attrib == "end_year": setattr(self, attrib, max(atts, attn)) elif attrib == "start_year": setattr(self, attrib, min(atts, attn)) elif attrib == "data": pass elif attrib == "number_earthquakes": setattr(self, attrib, atts + attn) elif attrib == "processes": if atts != attn: raise ValueError( "The catalogues cannot be merged" + " since the they have" + " a different processing history" ) else: raise ValueError("unknown attribute: %s" % attrib) self.sort_catalogue_chronologically()
def _merge_data(dat1, dat2): """ Merge two data dictionaries containing catalogue data :parameter dictionary dat1: Catalogue data dictionary :parameter dictionary dat2: Catalogue data dictionary :returns: A catalogue data dictionary containing the information originally included in dat1 and dat2 """ cnt = 0 for key in dat1: flg1 = len(dat1[key]) > 0 flg2 = len(dat2[key]) > 0 if flg1 != flg2: cnt += 1 if cnt: raise Warning("Cannot merge catalogues with different" + " attributes") return None else: for key in dat1: if isinstance(dat1[key], np.ndarray): dat1[key] = np.concatenate((dat1[key], dat2[key]), axis=0) elif isinstance(dat1[key], list): dat1[key] += dat2[key] else: raise ValueError("Unknown type") return dat1