Source code for openquake.hazardlib.stats

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (c) 2016-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake.  If not, see <http://www.gnu.org/licenses/>.
"""
Utilities to compute mean and quantile curves
"""
import math
import numpy
import pandas
from scipy.stats import norm
from openquake.baselib.general import AccumDict, agg_probs
from openquake.baselib.performance import compile
try:
    import numba
    SQRT05 = math.sqrt(0.5)

    @numba.vectorize("float64(float64)")
    def ndtr(z):
        return 0.5 * (1.0 + math.erf(z * SQRT05))
except ImportError:
    from scipy.special import ndtr


[docs]@compile(["float64[:,:](float64, float64[:,:])", "float64[:](float64, float64[:])"]) def truncnorm_sf(phi_b, values): """ Fast survival function for truncated normal distribution. Assumes zero mean, standard deviation equal to one and symmetric truncation. It is faster than using scipy.stats.truncnorm.sf. :param phi_b: ndtr(truncation_level); assume phi_b > .5 :param values: Numpy array of values as input to a survival function for the given distribution. :returns: Numpy array of survival function results in a range between 0 and 1. For phi_b close to .5 returns a step function 1 1 1 1 .5 0 0 0 0 0. """ # notation from http://en.wikipedia.org/wiki/Truncated_normal_distribution. # given that mu = 0 and sigma = 1, we have alpha = a and beta = b. # "CDF" in comments refers to cumulative distribution function # of non-truncated distribution with that mu and sigma values. # assume symmetric truncation, that is ``a = - truncation_level`` # and ``b = + truncation_level``. # calculate Z as ``Z = CDF(b) - CDF(a)``, here we assume that # ``CDF(a) == CDF(- truncation_level) == 1 - CDF(b)`` z = phi_b * 2. - 1. # calculate the result of survival function of ``values``, # and restrict it to the interval where probability is defined -- # 0..1. here we use some transformations of the original formula # that is ``SF(x) = 1 - (CDF(x) - CDF(a)) / Z`` in order to minimize # number of arithmetic operations and function calls: # ``SF(x) = (Z - CDF(x) + CDF(a)) / Z``, # ``SF(x) = (CDF(b) - CDF(a) - CDF(x) + CDF(a)) / Z``, # ``SF(x) = (CDF(b) - CDF(x)) / Z``. return ((phi_b - ndtr(values)) / z).clip(0., 1.)
[docs]def norm_cdf(x, a, s): """ Gaussian cumulative distribution function; if s=0, returns an Heaviside function instead. NB: for x=a, 0.5 is returned for all s. >>> round(norm_cdf(1.2, 1, .1), 10) 0.9772498681 >>> norm_cdf(1.2, 1, 0) 1.0 >>> round(norm_cdf(.8, 1, .1), 10) 0.0227501319 >>> norm_cdf(.8, 1, 0) 0.0 >>> norm_cdf(1, 1, .1) 0.5 >>> norm_cdf(1, 1, 0) 0.5 """ if s == 0: return numpy.heaviside(x - a, .5) else: return norm.cdf(x, loc=a, scale=s)
[docs]def calc_momenta(array, weights): """ :param array: an array of shape (E, ...) :param weights: an array of length E :returns: an array of shape (3, ...) with the first 3 statistical moments """ momenta = numpy.zeros((3,) + array.shape[1:]) momenta[0] = weights.sum() momenta[1] = numpy.einsum('i,i...', weights, array) momenta[2] = numpy.einsum('i,i...', weights, array**2) return momenta
[docs]def calc_avg_std(momenta): """ :param momenta: an array of shape (2, ...) obtained via calc_momenta :param totweight: total weight to divide for :returns: an array of shape (2, ...) with average and standard deviation >>> arr = numpy.array([[2, 4, 6], [3, 5, 7]]) >>> weights = numpy.ones(2) >>> calc_avg_std(calc_momenta(arr, weights)) array([[2.5, 4.5, 6.5], [0.5, 0.5, 0.5]]) """ avgstd = numpy.zeros_like(momenta[1:]) avgstd[0] = avg = momenta[1] / momenta[0] # make sure the variance is positive (due to numeric errors can be -1E-9) var = numpy.maximum(momenta[2] / momenta[0] - avg ** 2, 0.) avgstd[1] = numpy.sqrt(var) return avgstd
[docs]def avg_std(array, weights=None): """ :param array: an array of shape E, ... :param weights: an array of length E (or None for equal weights) :returns: an array of shape (2, ...) with average and standard deviation >>> avg_std(numpy.array([[2, 4, 6], [3, 5, 7]])) array([[2.5, 4.5, 6.5], [0.5, 0.5, 0.5]]) """ if weights is None: weights = numpy.ones(len(array)) return calc_avg_std(calc_momenta(array, weights))
[docs]def geom_avg_std(array, weights=None): """ :returns: geometric mean and geometric stddev (see https://en.wikipedia.org/wiki/Log-normal_distribution) """ return numpy.exp(avg_std(numpy.log(array), weights))
[docs]def mean_curve(values, weights=None): """ Compute the mean by using numpy.average on the first axis. """ if weights is None: weights = [1. / len(values)] * len(values) if not isinstance(values, numpy.ndarray): values = numpy.array(values) return numpy.average(values, axis=0, weights=weights)
[docs]def std_curve(values, weights=None): if weights is None: weights = [1. / len(values)] * len(values) m = mean_curve(values, weights) res = numpy.sqrt(numpy.einsum('i,i...', weights, (m - values) ** 2)) return res
cw_dt = numpy.dtype([('c', float), ('w', float)]) # NB: for equal weights and sorted values the quantile is computed as # numpy.interp(q, [1/N, 2/N, ..., N/N], values)
[docs]def quantile_curve(quantile, curves, weights=None): """ Compute the weighted quantile aggregate of an array or list of arrays :param quantile: Quantile value to calculate. Should be in the range [0.0, 1.0]. :param curves: R arrays :param weights: R weights with sum 1, or None :returns: A numpy array representing the quantile of the underlying arrays >>> arr = numpy.array([.15, .25, .3, .4, .5, .6, .75, .8, .9]) >>> quantile_curve(.8, arr) array(0.76) >>> quantile_curve(.85, numpy.array([.15, .15, .15])) # constant array array(0.15) """ if not isinstance(curves, numpy.ndarray): curves = numpy.array(curves) R = len(curves) if weights is None: weights = numpy.ones(R) / R else: weights = numpy.array(weights) assert len(weights) == R, (len(weights), R) result = numpy.zeros(curves.shape[1:]) for idx, _ in numpy.ndenumerate(result): cw = numpy.zeros(R, cw_dt) # (curve, weight) cw['c'] = curves[(slice(None), ) + idx] cw['w'] = weights cw.sort(order='c') # get the quantile from the interpolated CDF result[idx] = numpy.interp(quantile, cw['w'].cumsum(), cw['c']) return result
[docs]def max_curve(values, weights=None): """ Compute the maximum curve by taking the upper limits of the values; the weights are ignored and present only for API compatibility. The values can be arrays and then the maximum is taken pointwise: >>> max_curve([numpy.array([.3, .2]), numpy.array([.1, .4])]) array([0.3, 0.4]) """ return numpy.max(values, axis=0)
[docs]def compute_pmap_stats(pmaps, stats, weights, imtls): """ :param pmaps: a list of R probability maps :param stats: a sequence of S statistic functions :param weights: a list of ImtWeights :param imtls: a DictArray of intensity measure types :returns: a probability map with S internal values """ sids = set() p0 = next(iter(pmaps)) L = p0.shape_y for pmap in pmaps: sids.update(pmap) assert pmap.shape_y == L, (pmap.shape_y, L) if len(sids) == 0: raise ValueError('All empty probability maps!') sids = numpy.array(sorted(sids), numpy.uint32) nstats = len(stats) curves = numpy.zeros((len(pmaps), len(sids), L), numpy.float64) for i, pmap in enumerate(pmaps): for j, sid in enumerate(sids): if sid in pmap: curves[i, j] = pmap[sid].array[:, 0] out = p0.__class__.build(L, nstats, sids) for imt in imtls: slc = imtls(imt) w = [weight[imt] if hasattr(weight, 'dic') else weight for weight in weights] if sum(w) == 0: # expect no data for this IMT continue for i, array in enumerate(compute_stats(curves[:, :, slc], stats, w)): for j, sid in numpy.ndenumerate(sids): out[sid].array[slc, i] = array[j] return out
[docs]def calc_stats(df, kfields, stats, weights): """ :param df: a pandas DataFrame with a column rlz_id :param kfields: fields used in the group by :param stats: a dictionary stat_name->stat_func :param weights: an array of weights for each realization :returns: a DataFrame with the statistics """ acc = AccumDict(accum=[]) vfields = [f for f in df.columns if f not in kfields and f != 'rlz_id'] # in aggrisk kfields=['agg_id', 'loss_type'] # in aggcurves kfields=['agg_id', 'return_period', 'loss_type'] for key, group in df.groupby(kfields): for name, func in stats.items(): for k, kf in zip(key, kfields): acc[kf].append(k) for vf in vfields: values = numpy.zeros_like(weights) # shape R values[group.rlz_id] = getattr(group, vf).to_numpy() v = func(values, weights) acc[vf].append(v) acc['stat'].append(name) return pandas.DataFrame(acc)
# NB: this is a function linear in the array argument
[docs]def compute_stats(array, stats, weights): """ :param array: an array of R elements (which can be arrays) :param stats: a sequence of S statistic functions :param weights: a list of R weights :returns: an array of S elements (which can be arrays) """ result = numpy.zeros((len(stats),) + array.shape[1:], array.dtype) for i, func in enumerate(stats): result[i] = apply_stat(func, array, weights) return result
# like compute_stats, but on a matrix of shape (N, R)
[docs]def compute_stats2(arrayNR, stats, weights): """ :param arrayNR: an array of (N, R) elements :param stats: a sequence of S statistic functions :param weights: a list of R weights :returns: an array of (N, S) elements """ newshape = list(arrayNR.shape) if newshape[1] != len(weights): raise ValueError('Got %d weights but %d values!' % (len(weights), newshape[1])) newshape[1] = len(stats) # number of statistical outputs newarray = numpy.zeros(newshape, arrayNR.dtype) data = [arrayNR[:, i] for i in range(len(weights))] for i, func in enumerate(stats): newarray[:, i] = apply_stat(func, data, weights) return newarray
[docs]def apply_stat(f, arraylist, *extra, **kw): """ :param f: a callable arraylist -> array (of the same shape and dtype) :param arraylist: a list of arrays of the same shape and dtype :param extra: additional positional arguments :param kw: keyword arguments :returns: an array of the same shape and dtype Broadcast statistical functions to composite arrays. Here is an example: >>> dt = numpy.dtype([('a', (float, 2)), ('b', float)]) >>> a1 = numpy.array([([1, 2], 3)], dt) >>> a2 = numpy.array([([4, 5], 6)], dt) >>> apply_stat(mean_curve, [a1, a2]) array([([2.5, 3.5], 4.5)], dtype=[('a', '<f8', (2,)), ('b', '<f8')]) """ # NB: we are extending the calculation of statistics to the case of an # arraylist containing some scalars for arr in arraylist: if isinstance(arr, numpy.ndarray): dtype = arr.dtype shape = arr.shape break else: raise ValueError('No array found in the arraylist %s' % arraylist) # promote scalars to arrays of the given dtype and shape for i, arr in enumerate(arraylist): if numpy.isscalar(arr): arraylist[i] = numpy.ones(shape, dtype) * arr if dtype.names: # composite array new = numpy.zeros(shape, dtype) for name in dtype.names: new[name] = f([arr[name] for arr in arraylist], *extra, **kw) return new else: # simple array return f(arraylist, *extra, **kw)
[docs]def set_rlzs_stats(dstore, name, **attrs): """ :param dstore: a DataStore object :param name: dataset name of kind <prefix>-rlzs """ arrayNR = dstore[name][()] R = arrayNR.shape[1] pairs = list(attrs.items()) pairs.insert(1, ('rlz', numpy.arange(R))) dstore.set_shape_descr(name, **dict(pairs)) if R > 1: stats = dstore['oqparam'].hazard_stats() if not stats: return statnames, statfuncs = zip(*stats.items()) weights = dstore['weights'][()] name = name.replace('-rlzs', '-stats') dstore[name] = compute_stats2(arrayNR, statfuncs, weights) pairs = list(attrs.items()) pairs.insert(1, ('stat', statnames)) dstore.set_shape_descr(name, **dict(pairs))
[docs]def combine_probs(values_by_grp, cmakers, rlz): """ :param values_by_grp: C arrays of shape (D1, D2..., G) :param cmakers: C ContextMakers with G gsims each :param rlz: a realization index :returns: array of shape (D1, D2, ...) """ probs = [] for values, cmaker in zip(values_by_grp, cmakers): assert values.shape[-1] == len(cmaker.gsims) for g, rlzs in enumerate(cmaker.gsims.values()): if rlz in rlzs: probs.append(values[..., g]) return agg_probs(*probs)
[docs]def average_df(dframes, weights=None): """ Compute weighted average of DataFrames with the same index and columns. >>> df1 = pandas.DataFrame(dict(value=[1, 1, 1]), [1, 2, 3]) >>> df2 = pandas.DataFrame(dict(value=[2, 2, 2]), [1, 2, 3]) >>> average_df([df1, df2], [.4, .6]) value 1 1.6 2 1.6 3 1.6 """ d0 = dframes[0] n = len(dframes) if n == 1: return d0 elif weights is None: weights = numpy.ones(n) elif len(weights) != n: raise ValueError('There are %d weights for %d dataframes!' % (len(weights), n)) data = numpy.average([df.to_numpy() for df in dframes], weights=weights, axis=0) # shape (E, C) return pandas.DataFrame({ col: data[:, c] for c, col in enumerate(d0.columns)}, d0.index)