# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module :mod:`openquake.hazardlib.site` defines :class:`Site`.
"""
import logging
import numpy
import pandas
from scipy.spatial import distance
from shapely import geometry
from openquake.baselib import hdf5, python3compat
from openquake.baselib.general import not_equal, get_duplicates, cached_property
from openquake.hazardlib.geo.utils import (
fix_lon, cross_idl, _GeographicObjects, geohash, geohash3, CODE32,
spherical_to_cartesian, get_middle_point, geolocate)
from openquake.hazardlib.geo.geodetic import npoints_towards
from openquake.hazardlib.geo.mesh import Mesh
U32LIMIT = 2 ** 32
ampcode_dt = (numpy.bytes_, 4)
param = dict(
vs30measured='reference_vs30_type',
vs30='reference_vs30_value',
z1pt0='reference_depth_to_1pt0km_per_sec',
z2pt5='reference_depth_to_2pt5km_per_sec',
backarc='reference_backarc',
region='region',
xvf='xvf')
# TODO: equivalents of calculate_z1pt0 and calculate_z2pt5
# are inside some GSIM implementations, we should avoid duplication
[docs]def calculate_z1pt0(vs30, country):
'''
Reads an array of vs30 values (in m/s) and returns the depth to
the 1.0 km/s velocity horizon (in m)
Ref: Chiou, B. S.-J. and Youngs, R. R., 2014. 'Update of the
Chiou and Youngs NGA model for the average horizontal component
of peak ground motion and response spectra.' Earthquake Spectra,
30(3), pp.1117–1153.
:param vs30: the shear wave velocity (in m/s) at a depth of 30m
:param country: country as defined by geoBoundariesCGAZ_ADM0.shp
'''
z1pt0 = numpy.zeros(len(vs30))
df = pandas.DataFrame({'codes': country})
idx_glo = df.loc[df.codes!='JPN'].index.values
idx_jpn = df.loc[df.codes=='JPN'].index.values
c1_glo = 571 ** 4.
c2_glo = 1360.0 ** 4.
z1pt0[idx_glo] = numpy.exp((-7.15 / 4.0) * numpy.log(
(vs30[idx_glo] ** 4 + c1_glo) / (c2_glo + c1_glo)))
c1_jpn = 412 ** 2.
c2_jpn = 1360.0 ** 2.
z1pt0[idx_jpn] = numpy.exp((-5.23 / 2.0) * numpy.log(
(vs30[idx_jpn] ** 2 + c1_jpn) / (c2_jpn + c1_jpn)))
return z1pt0
[docs]def calculate_z2pt5(vs30, country):
'''
Reads an array of vs30 values (in m/s) and returns the depth
to the 2.5 km/s velocity horizon (in km)
Ref: Campbell, K.W. & Bozorgnia, Y., 2014.
'NGA-West2 ground motion model for the average horizontal components of
PGA, PGV, and 5pct damped linear acceleration response spectra.'
Earthquake Spectra, 30(3), pp.1087–1114.
:param vs30: the shear wave velocity (in m/s) at a depth of 30 m
:param country: country as defined by geoBoundariesCGAZ_ADM0.shp
'''
z2pt5 = numpy.zeros(len(vs30))
df = pandas.DataFrame({'codes': country})
idx_glo = df.loc[df.codes!='JPN'].index.values
idx_jpn = df.loc[df.codes=='JPN'].index.values
c1_glo = 7.089
c2_glo = -1.144
z2pt5[idx_glo] = numpy.exp(c1_glo + numpy.log(vs30[idx_glo]) * c2_glo)
c1_jpn = 5.359
c2_jpn = -1.102
z2pt5[idx_jpn] = numpy.exp(c1_jpn + c2_jpn * numpy.log(vs30[idx_jpn]))
return z2pt5
[docs]def rnd5(lons):
return numpy.round(lons, 5)
[docs]class TileGetter:
"""
An extractor complete->tile
"""
def __init__(self, tileno, ntiles):
self.tileno = tileno
self.ntiles = ntiles
def __call__(self, complete):
if self.ntiles == 1:
return complete
sc = SiteCollection.__new__(SiteCollection)
sc.array = complete.array[complete.sids % self.ntiles == self.tileno]
sc.complete = complete
return sc
[docs]class Site(object):
"""
Site object represents a geographical location defined by its position
as well as its soil characteristics.
:param location:
Instance of :class:`~openquake.hazardlib.geo.point.Point` representing
where the site is located.
:param vs30:
Average shear wave velocity in the top 30 m, in m/s.
:param z1pt0:
Vertical distance from earth surface to the layer where seismic waves
start to propagate with a speed above 1.0 km/sec, in meters.
:param z2pt5:
Vertical distance from earth surface to the layer where seismic waves
start to propagate with a speed above 2.5 km/sec, in km.
:raises ValueError:
If any of ``vs30``, ``z1pt0`` or ``z2pt5`` is zero or negative.
.. note::
:class:`Sites <Site>` are pickleable
"""
def __init__(self, location, vs30=numpy.nan,
z1pt0=numpy.nan, z2pt5=numpy.nan, **extras):
if not numpy.isnan(vs30) and vs30 <= 0:
raise ValueError('vs30 must be positive')
if not numpy.isnan(z1pt0) and z1pt0 <= 0:
raise ValueError('z1pt0 must be positive')
if not numpy.isnan(z2pt5) and z2pt5 <= 0:
raise ValueError('z2pt5 must be positive')
self.location = location
self.vs30 = vs30
self.z1pt0 = z1pt0
self.z2pt5 = z2pt5
for param, val in extras.items():
assert param in site_param_dt, param
setattr(self, param, val)
def __str__(self):
"""
>>> import openquake.hazardlib
>>> loc = openquake.hazardlib.geo.point.Point(1, 2, 3)
>>> str(Site(loc, 760.0, 100.0, 5.0))
'<Location=<Latitude=2.000000, Longitude=1.000000, Depth=3.0000>, \
Vs30=760.0000, Depth1.0km=100.0000, Depth2.5km=5.0000>'
"""
return (
"<Location=%s, Vs30=%.4f, Depth1.0km=%.4f, "
"Depth2.5km=%.4f>") % (
self.location, self.vs30, self.z1pt0, self.z2pt5)
def __hash__(self):
return hash((self.location.x, self.location.y))
def __eq__(self, other):
return (self.location.x, self.location.y) == (
other.location.x, other.location.y)
def __repr__(self):
"""
>>> import openquake.hazardlib
>>> loc = openquake.hazardlib.geo.point.Point(1, 2, 3)
>>> site = Site(loc, 760.0, 100.0, 5.0)
>>> str(site) == repr(site)
True
"""
return self.__str__()
def _extract(array_or_float, indices):
try: # if array
return array_or_float[indices]
except TypeError: # if float
return array_or_float
# dtype of each valid site parameter
site_param_dt = {
'sids': numpy.uint32,
'site_id': numpy.uint32,
'lon': numpy.float64,
'lat': numpy.float64,
'depth': numpy.float64,
'vs30': numpy.float64,
'kappa0': numpy.float64,
'vs30measured': bool,
'z1pt0': numpy.float64,
'z2pt5': numpy.float64,
'siteclass': (numpy.bytes_, 1),
'geohash': (numpy.bytes_, 6),
'z1pt4': numpy.float64,
'backarc': numpy.uint8, # 0=forearc,1=backarc,2=alongarc
'xvf': numpy.float64,
'soiltype': numpy.uint32,
'bas': bool,
# Parameters for site amplification
'ampcode': ampcode_dt,
'ec8': (numpy.bytes_, 1),
'ec8_p18': (numpy.bytes_, 2),
'h800': numpy.float64,
'geology': (numpy.bytes_, 20),
'amplfactor': numpy.float64,
'ch_ampl03': numpy.float64,
'ch_ampl06': numpy.float64,
'ch_phis2s03': numpy.float64,
'ch_phis2s06': numpy.float64,
'ch_phiss03': numpy.float64,
'ch_phiss06': numpy.float64,
'f0': numpy.float64,
# Fundamental period and and amplitude of HVRSR spectra
'THV': numpy.float64,
'PHV': numpy.float64,
# parameters for secondary perils
'friction_mid': numpy.float64,
'cohesion_mid': numpy.float64,
'saturation': numpy.float64,
'dry_density': numpy.float64,
'Fs': numpy.float64,
'crit_accel': numpy.float64,
'unit': (numpy.bytes_, 5),
'liq_susc_cat': (numpy.bytes_, 2),
'dw': numpy.float64,
'yield_acceleration': numpy.float64,
'slope': numpy.float64,
'relief': numpy.float64,
'gwd': numpy.float64,
'cti': numpy.float64,
'dc': numpy.float64,
'dr': numpy.float64,
'dwb': numpy.float64,
'zwb': numpy.float64,
'tri': numpy.float64,
'hwater': numpy.float64,
'precip': numpy.float64,
'lithology': (numpy.bytes_,2),
'landcover': (numpy.float64),
# parameters for YoudEtAl2002
'freeface_ratio': numpy.float64,
'T_15': numpy.float64,
'D50_15': numpy.float64,
'F_15': numpy.float64,
'T_eq': numpy.float64,
# other parameters
'custom_site_id': (numpy.bytes_, 8),
'region': numpy.uint32,
'in_cshm': bool # used in mcverry
}
[docs]class SiteCollection(object):
"""\
A collection of :class:`sites <Site>`.
Instances of this class are intended to represent a large collection
of sites in a most efficient way in terms of memory usage. The most
common usage is to instantiate it as `SiteCollection.from_points`, by
passing the set of required parameters, which must be a subset of the
following parameters:
%s
.. note::
If a :class:`SiteCollection` is created from sites containing only
lon and lat, iterating over the collection will yield
:class:`Sites <Site>` with a reference depth of 0.0 (the sea level).
Otherwise, it is possible to model the sites on a realistic
topographic surface by specifying the `depth` of each site.
:param sites:
A list of instances of :class:`Site` class.
""" % '\n'.join(' - %s: %s' % item
for item in sorted(site_param_dt.items())
if item[0] not in ('lon', 'lat'))
req_site_params = ()
[docs] @classmethod
def from_usgs_shakemap(cls, shakemap_array):
"""
Build a site collection from a shakemap array
"""
self = object.__new__(cls)
self.complete = self
n = len(shakemap_array)
dtype = numpy.dtype([(p, site_param_dt[p])
for p in 'sids lon lat depth vs30'.split()])
self.array = arr = numpy.zeros(n, dtype)
arr['sids'] = numpy.arange(n, dtype=numpy.uint32)
arr['lon'] = shakemap_array['lon']
arr['lat'] = shakemap_array['lat']
arr['depth'] = numpy.zeros(n)
arr['vs30'] = shakemap_array['vs30']
return self
[docs] @classmethod # this is the method used by the engine
def from_points(cls, lons, lats, depths=None, sitemodel=None,
req_site_params=()):
"""
Build the site collection from
:param lons:
a sequence of longitudes
:param lats:
a sequence of latitudes
:param depths:
a sequence of depths (or None)
:param sitemodel:
None or an object containing site parameters as attributes
:param req_site_params:
a sequence of required site parameters, possibly empty
"""
assert len(lons) < U32LIMIT, len(lons)
if depths is None:
depths = numpy.zeros(len(lons))
assert len(lons) == len(lats) == len(depths), (len(lons), len(lats),
len(depths))
self = object.__new__(cls)
self.complete = self
self.req_site_params = req_site_params
req = ['sids', 'lon', 'lat', 'depth'] + sorted(
par for par in req_site_params if par not in ('lon', 'lat'))
if 'vs30' in req and 'vs30measured' not in req:
req.append('vs30measured')
dtype = numpy.dtype([(p, site_param_dt[p]) for p in req])
self.array = arr = numpy.zeros(len(lons), dtype)
arr['sids'] = numpy.arange(len(lons), dtype=numpy.uint32)
arr['lon'] = fix_lon(numpy.array(lons))
arr['lat'] = numpy.array(lats)
arr['depth'] = numpy.array(depths)
if sitemodel is None:
pass
elif hasattr(sitemodel, 'reference_vs30_value'):
self.set_global_params(sitemodel, req_site_params)
else:
if hasattr(sitemodel, 'dtype'):
names = set(sitemodel.dtype.names)
sm = sitemodel
else:
sm = vars(sitemodel)
names = set(sm) & set(req_site_params)
for name in names:
if name not in ('lon', 'lat'):
self._set(name, sm[name])
dupl = get_duplicates(self.array, 'lon', 'lat')
if dupl:
# raise a decent error message displaying only the first 9
# duplicates (there could be millions)
n = len(dupl)
dots = ' ...' if n > 9 else ''
items = list(dupl.items())[:9]
raise ValueError('There are %d duplicate sites %s%s' %
(n, items, dots))
return self
[docs] @classmethod
def from_planar(cls, rup, point='TC', toward_azimuth=90,
direction='positive', hdist=100, step=5.,
req_site_params=()):
"""
:param rup: a rupture built with `rupture.get_planar`
:return: a :class:`openquake.hazardlib.site.SiteCollection` instance
"""
sfc = rup.surface
if point == 'TC':
pnt = sfc.get_top_edge_centroid()
lon, lat = pnt.x, pnt.y
elif point == 'BC':
lon, lat = get_middle_point(
sfc.corner_lons[2], sfc.corner_lats[2],
sfc.corner_lons[3], sfc.corner_lats[3])
else:
idx = {'TL': 0, 'TR': 1, 'BR': 2, 'BL': 3}[point]
lon = sfc.corner_lons[idx]
lat = sfc.corner_lats[idx]
depth = 0
vdist = 0
npoints = hdist / step
strike = rup.surface.strike
pointsp = []
pointsn = []
if direction in ['positive', 'both']:
azi = (strike + toward_azimuth) % 360
pointsp = npoints_towards(
lon, lat, depth, azi, hdist, vdist, npoints)
if direction in ['negative', 'both']:
idx = 0 if direction == 'negative' else 1
azi = (strike + toward_azimuth + 180) % 360
pointsn = npoints_towards(
lon, lat, depth, azi, hdist, vdist, npoints)
if len(pointsn):
lons = reversed(pointsn[0][idx:])
lats = reversed(pointsn[1][idx:])
else:
lons = pointsp[0]
lats = pointsp[1]
return cls.from_points(lons, lats, None, rup, req_site_params)
def _set(self, param, value):
self.add_col(param, site_param_dt[param])
self.array[param] = value
xyz = Mesh.xyz
[docs] def set_global_params(
self, oq, req_site_params=('z1pt0', 'z2pt5', 'backarc')):
"""
Set the global site parameters
(vs30, vs30measured, z1pt0, z2pt5, backarc)
"""
self._set('vs30', oq.reference_vs30_value)
self._set('vs30measured',
oq.reference_vs30_type == 'measured')
if 'z1pt0' in req_site_params:
self._set('z1pt0', oq.reference_depth_to_1pt0km_per_sec)
if 'z2pt5' in req_site_params:
self._set('z2pt5', oq.reference_depth_to_2pt5km_per_sec)
if 'backarc' in req_site_params:
self._set('backarc', oq.reference_backarc)
[docs] def filtered(self, indices):
"""
:param indices:
a subset of indices in the range [0 .. tot_sites - 1]
:returns:
a filtered SiteCollection instance if `indices` is a proper subset
of the available indices, otherwise returns the full SiteCollection
"""
if indices is None or len(indices) == len(self):
return self
new = object.__new__(self.__class__)
indices = numpy.uint32(indices)
new.array = self.array[indices]
new.complete = self.complete
return new
[docs] def reduce(self, nsites):
"""
:returns: a filtered SiteCollection with around nsites (if nsites<=N)
"""
N = len(self.complete)
n = N // nsites
if n <= 1:
return self
sids, = numpy.where(self.complete.sids % n == 0)
return self.filtered(sids)
[docs] def add_col(self, colname, dtype, values=None):
"""
Add a column to the underlying array (if not already there)
"""
names = self.array.dtype.names
if colname not in names:
dtlist = [(name, self.array.dtype[name]) for name in names]
dtlist.append((colname, dtype))
arr = numpy.zeros(len(self), dtlist)
for name in names:
arr[name] = self.array[name]
if values is not None:
arr[colname] = values
self.array = arr
[docs] def make_complete(self):
"""
Turns the site collection into a complete one, if needed
"""
# reset the site indices from 0 to N-1 and set self.complete to self
self.array['sids'] = numpy.arange(len(self), dtype=numpy.uint32)
self.complete = self
[docs] def one(self):
"""
:returns: a SiteCollection with a site of the minimal vs30
"""
if 'vs30' in self.array.dtype.names:
idx = self.array['vs30'].argmin()
else:
idx = 0
return self.filtered([self.sids[idx]])
# used in preclassical
[docs] def get_cdist(self, rec_or_loc):
"""
:param rec_or_loc: a record with field 'hypo' or a Point instance
:returns: array of N euclidean distances from rec['hypo']
"""
try:
lon, lat, dep = rec_or_loc['hypo']
except TypeError:
lon, lat, dep = rec_or_loc.x, rec_or_loc.y, rec_or_loc.z
xyz = spherical_to_cartesian(lon, lat, dep).reshape(1, 3)
return distance.cdist(self.xyz, xyz)[:, 0]
def __init__(self, sites):
"""
Build a complete SiteCollection from a list of Site objects
"""
extra = [(p, site_param_dt[p]) for p in sorted(vars(sites[0]))
if p in site_param_dt]
dtlist = [(p, site_param_dt[p])
for p in ('sids', 'lon', 'lat', 'depth')] + extra
self.array = arr = numpy.zeros(len(sites), dtlist)
self.complete = self
for i, site in enumerate(sites):
arr['sids'][i] = getattr(site, 'id', i)
arr['lon'][i] = site.location.longitude
arr['lat'][i] = site.location.latitude
arr['depth'][i] = site.location.depth
for p, dt in extra:
arr[p][i] = getattr(site, p)
# NB: in test_correlation.py we define a SiteCollection with
# non-unique sites, so we cannot do an
# assert len(numpy.unique(self[['lon', 'lat']])) == len(self)
def __eq__(self, other):
return not self.__ne__(other)
def __ne__(self, other):
return not_equal(self.array, other.array)
def __toh5__(self):
names = self.array.dtype.names
cols = ' '.join(names)
return {n: self.array[n] for n in names}, {'__pdcolumns__': cols}
def __fromh5__(self, dic, attrs):
if isinstance(dic, dict): # engine >= 3.11
params = attrs['__pdcolumns__'].split()
dtype = numpy.dtype([(p, site_param_dt[p]) for p in params])
self.array = numpy.zeros(len(dic['sids']), dtype)
for p in dic:
self.array[p] = dic[p][()]
else: # old engine, dic is actually a structured array
self.array = dic
self.complete = self
@property
def mesh(self):
"""Return a mesh with the given lons, lats, and depths"""
return Mesh(self['lon'], self['lat'], self['depth'])
[docs] def at_sea_level(self):
"""True if all depths are zero"""
return (self.depths == 0).all()
# used in the engine
[docs] def split_max(self, max_sites):
"""
Split a SiteCollection into SiteCollection instances
"""
return self.split(numpy.ceil(len(self) / max_sites))
[docs] def split(self, ntiles, minsize=1):
"""
:param ntiles: number of tiles to generate (ceiled if float)
:returns: self if there are <=1 tiles, otherwise the tiles
"""
maxtiles = numpy.ceil(len(self) / minsize)
ntiles = min(numpy.ceil(ntiles), maxtiles)
return [TileGetter(i, ntiles) for i in range(int(ntiles))]
[docs] def split_in_tiles(self, hint):
"""
Split a SiteCollection into a set of tiles with contiguous site IDs
"""
if hint <= 1:
return [self]
elif hint > len(self):
hint = len(self)
tiles = []
for sids in numpy.array_split(self.sids, hint):
assert len(sids), 'Cannot split %s in %d tiles' % (self, hint)
sc = SiteCollection.__new__(SiteCollection)
sc.array = self.complete.array[sids]
sc.complete = self.complete
tiles.append(sc)
return tiles
[docs] def split_by_gh3(self):
"""
Split a SiteCollection into a set of tiles with the same geohash3
"""
gh3s = geohash3(self.lons, self.lats)
gb = pandas.DataFrame(dict(sid=self.sids, gh3=gh3s)).groupby('gh3')
tiles = []
for gh3, df in gb:
sc = SiteCollection.__new__(SiteCollection)
sc.array = self.complete.array[df.sid]
sc.complete = self.complete
sc.gh3 = gh3
tiles.append(sc)
return tiles
[docs] def count_close(self, location, distance):
"""
:returns: the number of sites within the distance from the location
"""
return (self.get_cdist(location) < distance).sum()
def __iter__(self):
"""
Iterate through all :class:`sites <Site>` in the collection, yielding
one at a time.
"""
params = self.array.dtype.names[4:] # except sids, lons, lats, depths
sids = self.sids
for i, location in enumerate(self.mesh):
kw = {p: self.array[i][p] for p in params}
s = Site(location, **kw)
s.id = sids[i]
yield s
[docs] def filter(self, mask):
"""
Create a SiteCollection with only a subset of sites.
:param mask:
Numpy array of boolean values of the same length as the site
collection. ``True`` values should indicate that site with that
index should be included into the filtered collection.
:returns:
A new :class:`SiteCollection` instance, unless all the
values in ``mask`` are ``True``, in which case this site collection
is returned, or if all the values in ``mask`` are ``False``,
in which case method returns ``None``. New collection has data
of only those sites that were marked for inclusion in the mask.
"""
assert len(mask) == len(self), (len(mask), len(self))
if mask.all():
# all sites satisfy the filter, return
# this collection unchanged
return self
if not mask.any():
# no sites pass the filter, return None
return None
# extract indices of Trues from the mask
indices, = mask.nonzero()
return self.filtered(indices)
[docs] def assoc(self, site_model, assoc_dist, ignore=()):
"""
Associate the `site_model` parameters to the sites.
Log a warning if the site parameters are more distant than
`assoc_dist`.
:returns: the site model array reduced to the hazard sites
"""
# NB: self != self.complete in the aristotle tests with stations
m1, m2 = site_model[['lon', 'lat']], self.complete[['lon', 'lat']]
if len(m1) != len(m2) or (m1 != m2).any(): # associate
_sitecol, site_model, _discarded = _GeographicObjects(
site_model).assoc(self.complete, assoc_dist, 'warn')
ok = set(self.array.dtype.names) & set(site_model.dtype.names) - set(
ignore) - {'lon', 'lat', 'depth'}
for name in ok:
vals = site_model[name]
self._set(name, vals[self.sids])
self.complete._set(name, vals)
# sanity check
for param in self.req_site_params:
if param in ignore:
continue
dt = site_param_dt[param]
if dt is numpy.float64 and (self.array[param] == 0.).all():
raise ValueError('The site parameter %s is always zero: please'
' check the site model' % param)
return site_model
[docs] def within(self, region):
"""
:param region: a shapely polygon
:returns: a filtered SiteCollection of sites within the region
"""
mask = numpy.array([
geometry.Point(rec['lon'], rec['lat']).within(region)
for rec in self.array])
return self.filter(mask)
[docs] def within_bbox(self, bbox):
"""
:param bbox:
a quartet (min_lon, min_lat, max_lon, max_lat)
:returns:
site IDs within the bounding box
"""
min_lon, min_lat, max_lon, max_lat = bbox
lons, lats = self['lon'], self['lat']
if cross_idl(lons.min(), lons.max(), min_lon, max_lon):
lons = lons % 360
min_lon, max_lon = min_lon % 360, max_lon % 360
mask = (min_lon < lons) * (lons < max_lon) * \
(min_lat < lats) * (lats < max_lat)
return mask.nonzero()[0]
[docs] def extend(self, lons, lats):
"""
Extend the site collection to additional (and different) points.
Used for station_data in conditioned GMFs.
"""
assert len(lons) == len(lats), (len(lons), len(lats))
complete = self.complete
orig = set(zip(rnd5(complete.lons), rnd5(complete.lats)))
new = set(zip(rnd5(lons), rnd5(lats))) - orig
if not new:
return self
lons, lats = zip(*sorted(new))
N1 = len(complete)
N2 = len(new)
array = numpy.zeros(N1 + N2, self.array.dtype)
array[:N1] = complete.array
array[N1:]['sids'] = numpy.arange(N1, N1+N2)
array[N1:]['lon'] = lons
array[N1:]['lat'] = lats
complete.array = array
@cached_property
def countries(self):
"""
Return the countries for each site in the SiteCollection.
The boundaries of the countries are defined as in the file
geoBoundariesCGAZ_ADM0.shp
"""
from openquake.commonlib import readinput
geom_df = readinput.read_countries_df()
lonlats = numpy.zeros((len(self), 2), numpy.float32)
lonlats[:, 0] = self.lons
lonlats[:, 1] = self.lats
return geolocate(lonlats, geom_df)
[docs] def by_country(self):
"""
Returns a table with the number of sites per country.
"""
uni, cnt = numpy.unique(self.countries, return_counts=True)
out = numpy.zeros(len(uni), [('country', (numpy.bytes_, 3)),
('num_sites', int)])
out['country'] = uni
out['num_sites'] = cnt
out.sort(order='num_sites')
return out
[docs] def geohash(self, length):
"""
:param length: length of the geohash in the range 1..8
:returns: an array of N geohashes, one per site
"""
ln = numpy.uint8(length)
arr = CODE32[geohash(self['lon'], self['lat'], ln)]
return [row.tobytes() for row in arr]
[docs] def num_geohashes(self, length):
"""
:param length: length of the geohash in the range 1..8
:returns: number of distinct geohashes in the site collection
"""
return len(numpy.unique(self.geohash(length)))
[docs] def calculate_z1pt0(self):
"""
Compute the column z1pt0 from the vs30 using a region-dependent
formula for NGA-West2
"""
self.array['z1pt0'] = calculate_z1pt0(self.vs30, self.countries)
[docs] def calculate_z2pt5(self):
"""
Compute the column z2pt5 from the vs30 using a region-dependent
formula for NGA-West2
"""
self.array['z2pt5'] = calculate_z2pt5(self.vs30, self.countries)
def __getstate__(self):
return dict(array=self.array, complete=self.complete)
def __getitem__(self, sid):
"""
Return a site record
"""
return self.array[sid]
def __getattr__(self, name):
if name in ('lons', 'lats', 'depths'): # legacy names
return self.array[name[:-1]]
if name not in site_param_dt:
raise AttributeError(name)
return self.array[name]
def __len__(self):
"""
Return the number of sites in the collection.
"""
return len(self.array)
def __repr__(self):
total_sites = len(self.complete.array)
return '<SiteCollection with %d/%d sites>' % (
len(self), total_sites)
[docs]def check_all_equal(dicts, *keys):
"""
Check all the dictionaries have the same value for the same key
"""
if not dicts:
return
dic0 = dicts[0]
for key in keys:
for dic in dicts[1:]:
assert dic[key] == dic0[key], (dic[key], dic0[key])
[docs]def merge_sitecols(hdf5fnames, check_gmfs=False):
"""
Read a number of site collections from the given filenames
and returns a single SiteCollection instance. Raise an error
if there are duplicate sites (by looking at the custom_site_id).
If `check_gmfs` is set, assume there are `gmf_data` groups and
make sure the attributes are consistent (i.e. the same over all files).
"""
sitecols = []
attrs = []
for fname in hdf5fnames:
with hdf5.File(fname, 'r') as f:
sitecols.append(f['sitecol'])
if check_gmfs:
attrs.append(dict(f['gmf_data'].attrs))
if len(sitecols) == 1:
return sitecols[0]
if attrs:
check_all_equal(attrs, '__pdcolumns__', 'effective_time', 'investigation_time')
new = object.__new__(sitecols[0].__class__)
new.array = numpy.concatenate([sc.array for sc in sitecols])
new.array['sids'] = numpy.arange(len(new.array))
new.complete = new
if 'custom_site_id' in new.array.dtype.names:
ids, counts = numpy.unique(new['custom_site_id'], return_counts=1)
if (counts > 1).any():
dupl = ' '.join(python3compat.decode(ids[counts > 1]))
raise RuntimeError(f'{dupl} are duplicated')
elif len(sitecols) > 1:
logging.warning('There is no custom_site_id, not checking for duplicates')
return new