Source code for openquake.hazardlib.contexts

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2018-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake.  If not, see <http://www.gnu.org/licenses/>.

import abc
import copy
import time
import logging
import warnings
import itertools
import operator
import collections
import numpy
import shapely
from scipy.interpolate import interp1d

from openquake.baselib import config
from openquake.baselib.general import (
    AccumDict, DictArray, RecordBuilder, split_in_slices, block_splitter,
    sqrscale)
from openquake.baselib.performance import Monitor, split_array, kround0, compile
from openquake.baselib.python3compat import decode
from openquake.hazardlib import valid, imt as imt_module
from openquake.hazardlib.const import StdDev, OK_COMPONENTS
from openquake.hazardlib.tom import NegativeBinomialTOM, PoissonTOM
from openquake.hazardlib.stats import ndtr, truncnorm_sf
from openquake.hazardlib.site import SiteCollection, site_param_dt
from openquake.hazardlib.calc.filters import (
    SourceFilter, IntegrationDistance, magdepdist,
    get_dparam, get_distances, getdefault, MINMAG, MAXMAG)
from openquake.hazardlib.map_array import MapArray
from openquake.hazardlib.geo import multiline
from openquake.hazardlib.geo.mesh import Mesh
from openquake.hazardlib.geo.surface.planar import (
    project, project_back, get_distances_planar)

U8 = numpy.uint8
I32 = numpy.int32
U32 = numpy.uint32
F16 = numpy.float16
F32 = numpy.float32
F64 = numpy.float64
TWO20 = 2**20
TWO16 = 2**16
TWO24 = 2**24
TWO32 = 2**32
STD_TYPES = (StdDev.TOTAL, StdDev.INTER_EVENT, StdDev.INTRA_EVENT)
KNOWN_DISTANCES = frozenset('''rrup rx_ry0 rx ry0 rjb rhypo repi rcdpp azimuth
azimuthcp rvolc clon_clat clon clat'''.split())
NUM_BINS = 256
DIST_BINS = sqrscale(80, 1000, NUM_BINS)
MEA = 0
STD = 1
bymag = operator.attrgetter('mag')
# These coordinates were provided by M Gerstenberger (personal
# communication, 10 August 2018)
cshm_polygon = shapely.geometry.Polygon([(171.6, -43.3), (173.2, -43.3),
                                         (173.2, -43.9), (171.6, -43.9)])


def _get(surfaces, param, dparam, mask=slice(None)):
    arr = numpy.array([dparam[sec.idx, param][mask] for sec in surfaces])
    return arr  # shape (S, N, ...)


def _get_tu(rup, dparam, mask):
    tor = rup.surface.tor
    arr = _get(rup.surface.surfaces, 'tuw', dparam, mask)
    S, N = arr.shape[:2]
    # keep the flipped values and then reorder the surface indices
    # arr has shape (S, N, 2, 3) where 2 refer to the flipping
    tuw = numpy.zeros((S, N, 3), F32)
    for s in range(S):
        idx = tor.soidx[s]
        flip = int(tor.flipped[idx])
        tuw[s] = arr[idx, :, flip, :]  # shape (N, 3)
    return multiline.get_tu(tor.shift, tuw)


[docs]def set_distances(ctx, rup, r_sites, param, dparam, mask, tu): """ Set the distance attributes on the context; also manages paired attributes like clon_lat and rx_ry0. """ if dparam is None: # no multifault dists = get_distances(rup, r_sites, param) if '_' in param: p0, p1 = param.split('_') # clon_clat setattr(ctx, p0, dists[:, 0]) setattr(ctx, p1, dists[:, 1]) else: setattr(ctx, param, dists) else: # use the MultiLine object u_max = rup.surface.msparam['u_max'] if param in ('rx', 'ry0'): tut, uut = tu ''' # sanity check with the right parameters t, u t, u = rup.surface.tor.get_tu(r_sites) numpy.testing.assert_allclose(tut, t) numpy.testing.assert_allclose(uut, u) ''' if param == 'rx': ctx.rx = tut elif param == 'ry0': neg = uut < 0 ctx.ry0[neg] = numpy.abs(uut[neg]) big = uut > u_max ctx.ry0[big] = uut[big] - u_max elif param == 'rjb': rjbs = _get(rup.surface.surfaces, 'rjb', dparam, mask) ctx['rjb'] = numpy.min(rjbs, axis=0) ''' # sanity check with the right rjb rjb = rup.surface.get_joyner_boore_distance(r_sites) numpy.testing.assert_allclose(ctx.rjb, rjb) ''' elif param == 'clon_clat': coos = _get(rup.surface.surfaces, 'clon_clat', dparam, mask) # shape (numsections, numsites, 3) m = Mesh(coos[:, :, 0], coos[:, :, 1]).get_closest_points(r_sites) # shape (numsites, 3) ctx['clon'] = m.lons ctx['clat'] = m.lats
[docs]def round_dist(dst): idx = numpy.searchsorted(DIST_BINS, dst) idx[idx == NUM_BINS] -= 1 return DIST_BINS[idx]
[docs]def is_modifiable(gsim): """ :returns: True if it is a ModifiableGMPE """ return hasattr(gsim, 'gmpe') and hasattr(gsim, 'params')
[docs]def concat(ctxs): """ Concatenate context arrays. :returns: [] or [poisson_ctx] or [nonpoisson_ctx, ...] """ if not ctxs: return [] ctx = ctxs[0] out = [] # if ctx has probs_occur, it is assumed to be non-poissonian if hasattr(ctx, 'probs_occur') and ctx.probs_occur.shape[1] >= 1: # case 27, 29, 62, 65, 75, 78, 80 for shp in set(ctx.probs_occur.shape[1] for ctx in ctxs): p_array = [p for p in ctxs if p.probs_occur.shape[1] == shp] out.append(numpy.concatenate(p_array).view(numpy.recarray)) else: out.append(numpy.concatenate(ctxs).view(numpy.recarray)) return out
[docs]def size(imtls): """ :returns: size of the dictionary of arrays imtls """ imls = imtls[next(iter(imtls))] return len(imls) * len(imtls)
[docs]def trivial(ctx, name): """ :param ctx: a recarray :param name: name of a parameter :returns: True if the parameter is missing or single valued """ if name not in ctx.dtype.names: return True return len(numpy.unique(numpy.float32(ctx[name]))) == 1
[docs]class Oq(object): """ A mock for OqParam """ af = None aristotle = False cross_correl = None mea_tau_phi = False split_sources = True use_rates = False with_betw_ratio = None infer_occur_rates = False inputs = () def __init__(self, **hparams): vars(self).update(hparams) @property def min_iml(self): try: imtls = self.imtls except AttributeError: imtls = self.hazard_imtls return numpy.array([1E-10 for imt in imtls])
[docs] def get_reqv(self): if 'reqv' not in self.inputs: return return {key: valid.RjbEquivalent(value) for key, value in self.inputs['reqv'].items()}
[docs]class DeltaRatesGetter(object): """ Read the delta rates from an aftershock datastore """ def __init__(self, dstore): self.dstore = dstore def __call__(self, src_id): with self.dstore.open('r') as dstore: return dstore['delta_rates'][src_id]
# same speed as performance.kround, round more
[docs]def kround1(ctx, kfields): kdist = 2. * ctx.mag**2 # heuristic collapse distance from 32 to 200 km close = ctx.rrup < kdist far = ~close out = numpy.zeros(len(ctx), [(k, ctx.dtype[k]) for k in kfields]) for kfield in kfields: kval = ctx[kfield] if kfield == 'vs30': out[kfield][close] = numpy.round(kval[close]) # round less out[kfield][far] = numpy.round(kval[far], 1) # round more elif kval.dtype == F64 and kfield != 'mag': out[kfield][close] = F16(kval[close]) # round less out[kfield][far] = numpy.round(kval[far]) # round more else: out[kfield] = ctx[kfield] return out
[docs]def kround2(ctx, kfields): kdist = 5. * ctx.mag**2 # from 80 to 500 km close = ctx.rrup < kdist far = ~close out = numpy.zeros(len(ctx), [(k, ctx.dtype[k]) for k in kfields]) for kfield in kfields: kval = ctx[kfield] if kfield == 'rx': # can be negative out[kfield] = numpy.round(kval) elif kfield in KNOWN_DISTANCES: out[kfield][close] = numpy.ceil(kval[close]) # round to 1 km out[kfield][far] = round_dist(kval[far]) # round more elif kfield == 'vs30': out[kfield][close] = numpy.round(kval[close]) # round less out[kfield][far] = numpy.round(kval[far], 1) # round more elif kval.dtype == F64 and kfield != 'mag': out[kfield][close] = F16(kval[close]) # round less out[kfield][far] = numpy.round(kval[far]) # round more else: out[kfield] = ctx[kfield] return out
kround = {0: kround0, 1: kround1, 2: kround2}
[docs]class FarAwayRupture(Exception): """Raised if the rupture is outside the maximum distance for all sites"""
[docs]def get_num_distances(gsims): """ :returns: the number of distances required for the given GSIMs """ dists = set() for gsim in gsims: dists.update(gsim.REQUIRES_DISTANCES) return len(dists)
# NB: minimum_magnitude is ignored def _interp(param, name, trt): try: mdd = param[name] except KeyError: return magdepdist([(MINMAG, 1000), (MAXMAG, 1000)]) if isinstance(mdd, IntegrationDistance): return mdd(trt) elif isinstance(mdd, dict): if mdd: magdist = getdefault(mdd, trt) else: magdist = [(MINMAG, 1000), (MAXMAG, 1000)] return magdepdist(magdist) return mdd
[docs]def simple_cmaker(gsims, imts, **params): """ :returns: a simplified ContextMaker for use in the tests """ dic = dict(imtls={imt: [0] for imt in imts}) dic.update(**params) return ContextMaker('*', gsims, dic)
# ############################ genctxs ################################## # # generator of quartets (rup_index, mag, planar_array, sites) def _quartets(cmaker, src, sitecol, cdist, magdist, planardict): minmag = cmaker.maximum_distance.x[0] maxmag = cmaker.maximum_distance.x[-1] # splitting by magnitude if src.count_nphc() == 1: # one rupture per magnitude for m, (mag, pla) in enumerate(planardict.items()): if minmag < mag < maxmag: yield m, mag, pla, sitecol else: for m, rup in enumerate(src.iruptures()): mag = rup.mag if mag > maxmag or mag < minmag: continue arr = [rup.surface.array.reshape(-1, 3)] pla = planardict[mag] # NB: having a good psdist is essential for performance! psdist = src.get_psdist(m, mag, cmaker.pointsource_distance, magdist) close = sitecol.filter(cdist <= psdist) far = sitecol.filter(cdist > psdist) if cmaker.fewsites: if close is None: # all is far, common for small mag yield m, mag, arr, sitecol else: # something is close yield m, mag, pla, sitecol else: # many sites if close is None: # all is far yield m, mag, arr, far elif far is None: # all is close yield m, mag, pla, close else: # some sites are far, some are close yield m, mag, arr, far yield m, mag, pla, close # helper used to populate contexts for planar ruptures def _get_ctx_planar(cmaker, zeroctx, mag, planar, sites, src_id, tom): # computing distances rrup, xx, yy = project(planar, sites.xyz) # (3, U, N) # get the closest points on the surface if cmaker.fewsites or 'clon' in cmaker.REQUIRES_DISTANCES: closest = project_back(planar, xx, yy) # (3, U, N) # set distances zeroctx['rrup'] = rrup for par in cmaker.REQUIRES_DISTANCES - {'rrup'}: zeroctx[par] = get_distances_planar(planar, sites, par) for par in cmaker.REQUIRES_DISTANCES: dst = zeroctx[par] if cmaker.minimum_distance: dst[dst < cmaker.minimum_distance] = cmaker.minimum_distance # ctx has shape (U, N), ctxt (N, U) ctxt = zeroctx.T # smart trick taking advantage of numpy magic ctxt['src_id'] = src_id # setting rupture parameters for par in cmaker.ruptparams: if par == 'mag': ctxt[par] = mag elif par == 'occurrence_rate': ctxt[par] = planar.wlr[:, 2] # shape U-> (N, U) elif par == 'width': ctxt[par] = planar.wlr[:, 0] elif par == 'strike': ctxt[par] = planar.sdr[:, 0] elif par == 'dip': ctxt[par] = planar.sdr[:, 1] elif par == 'rake': ctxt[par] = planar.sdr[:, 2] elif par == 'ztor': # top edge depth ctxt[par] = planar.corners[:, 2, 0] elif par == 'zbot': # bottom edge depth ctxt[par] = planar.corners[:, 2, 3] elif par == 'hypo_lon': ctxt[par] = planar.hypo[:, 0] elif par == 'hypo_lat': ctxt[par] = planar.hypo[:, 1] elif par == 'hypo_depth': ctxt[par] = planar.hypo[:, 2] if cmaker.fewsites: zeroctx['clon'] = closest[0] zeroctx['clat'] = closest[1] # setting site parameters for par in cmaker.siteparams: zeroctx[par] = sites.array[par] # shape N-> (U, N) if hasattr(tom, 'get_pmf'): # NegativeBinomialTOM # read Probability Mass Function from model and reshape it # into predetermined shape of probs_occur pmf = tom.get_pmf(planar.wlr[:, 2], n_max=zeroctx['probs_occur'].shape[2]) zeroctx['probs_occur'] = pmf[:, numpy.newaxis, :] return zeroctx.flatten() # shape N*U
[docs]def genctxs_Pp(src, sitecol, cmaker): """ Context generator for point sources and collapsed point sources """ dd = cmaker.defaultdict.copy() tom = getattr(src, 'temporal_occurrence_model', None) if tom and isinstance(tom, NegativeBinomialTOM): if hasattr(src, 'pointsources'): # CollapsedPointSource maxrate = max(max(ps.mfd.occurrence_rates) for ps in src.pointsources) else: # regular source maxrate = max(src.mfd.occurrence_rates) p_size = tom.get_pmf(maxrate).shape[1] dd['probs_occur'] = numpy.zeros(p_size) else: dd['probs_occur'] = numpy.zeros(0) builder = RecordBuilder(**dd) cmaker.siteparams = [par for par in sitecol.array.dtype.names if par in dd] cmaker.ruptparams = cmaker.REQUIRES_RUPTURE_PARAMETERS | {'occurrence_rate'} with cmaker.ir_mon: # building planar geometries planardict = src.get_planar(cmaker.shift_hypo) magdist = {mag: cmaker.maximum_distance(mag) for mag, rate in src.get_annual_occurrence_rates()} # cmaker.maximum_distance(mag) can be 0 if outside the mag range maxmag = max(mag for mag, dist in magdist.items() if dist > 0) maxdist = magdist[maxmag] cdist = sitecol.get_cdist(src.location) # NB: having a decent max_radius is essential for performance! mask = cdist <= maxdist + src.max_radius(maxdist) sitecol = sitecol.filter(mask) if sitecol is None: return [] for magi, mag, planarlist, sites in _quartets( cmaker, src, sitecol, cdist[mask], magdist, planardict): if not planarlist: continue elif len(planarlist) > 1: # when using ps_grid_spacing pla = numpy.concatenate(planarlist).view(numpy.recarray) else: pla = planarlist[0] offset = src.offset + magi * len(pla) zctx = builder.zeros((len(pla), len(sites))) # shape (N, U) if cmaker.fewsites: rup_ids = zctx['rup_id'].T # numpy trick, shape (U, N) rup_ids[:] = numpy.arange(offset, offset+len(pla)) # building contexts ctx = _get_ctx_planar(cmaker, zctx, mag, pla, sites, src.id, tom) ctxt = ctx[ctx.rrup < magdist[mag]] if len(ctxt): yield ctxt
def _build_dparam(src, sitecol, cmaker): dparams = {'rjb', 'tuw'} if cmaker.fewsites: dparams |= {'clon_clat'} sections = src.get_sections(src.get_unique_idxs()) out = {} for sec in sections: out[sec.idx, 'rrup'] = get_dparam(sec, sitecol, 'rrup') for param in dparams: out[sec.idx, param] = get_dparam(sec, sitecol, param) # use multi_fault_test to debug this # from openquake.baselib.general import getsizeof # print(getsizeof(out)) return out # this is the critical function for the performance of the classical calculator # the performance is dominated by the CPU cache, i.e. large arrays are slow # the only way to speedup is to reduce the maximum_distance, then the array # will become shorter in the N dimension (number of affected sites), or to # collapse the ruptures, then truncnorm_sf will be called less times @compile("(float64[:,:,:], float64[:,:], float64, float32[:,:])") def _set_poes(mean_std, loglevels, phi_b, out): L1 = loglevels.size // len(loglevels) for m, levels in enumerate(loglevels): mL1 = m * L1 mea, std = mean_std[:, m] # shape N for lvl, iml in enumerate(levels): out[mL1 + lvl] = truncnorm_sf(phi_b, (iml - mea) / std) # ############################ ContextMaker ############################### # def _fix(gsimdict, betw): if betw: out = {} for gsim, uints in gsimdict.items(): if len(gsim.DEFINED_FOR_STANDARD_DEVIATION_TYPES) == 1: out[valid.modified_gsim(gsim, add_between_within_stds=betw)] \ = uints else: out[gsim] = uints return out return gsimdict
[docs]class ContextMaker(object): """ A class to manage the creation of contexts and to compute mean/stddevs and possibly PoEs. :param trt: tectonic region type string :param gsims: list of GSIMs or a dictionary gsim -> rlz indices :param oq: dictionary of parameters like the maximum_distance, the IMTLs, the investigation time, etc, or an OqParam instance :param extraparams: additional site parameters to consider, used only in the tests NB: the trt can be different from the tectonic region type for which the underlying GSIMs are defined. This is intentional. """ REQUIRES = ['DISTANCES', 'SITES_PARAMETERS', 'RUPTURE_PARAMETERS'] scenario = False deltagetter = None fewsites = False tom = None def __init__(self, trt, gsims, oq, monitor=Monitor(), extraparams=()): self.trt = trt if isinstance(oq, dict): # this happens when instantiating RuptureData in extract.py param = oq oq = Oq(**param) self.mags = param.get('mags', ()) # list of strings %.2f self.cross_correl = param.get('cross_correl') # cond_spectra_test else: # OqParam param = vars(oq) param['reqv'] = oq.get_reqv() param['af'] = getattr(oq, 'af', None) self.cross_correl = oq.cross_correl self.imtls = oq.imtls try: self.mags = oq.mags_by_trt[trt] except AttributeError: self.mags = () except KeyError: # missing TRT but there is only one [(_, self.mags)] = oq.mags_by_trt.items() if oq.with_betw_ratio: betw_ratio = {'with_betw_ratio': oq.with_betw_ratio} elif oq.aristotle: betw_ratio = {'with_betw_ratio': 1.7} # same as in GEESE else: betw_ratio = {} if isinstance(gsims, dict): self.gsims = _fix(gsims, betw_ratio) else: self.gsims = _fix({gsim: U32([i]) for i, gsim in enumerate(gsims)}, betw_ratio) # NB: the gid array can be overridden later on self.gid = numpy.arange(len(gsims), dtype=numpy.uint16) self.oq = oq self.monitor = monitor self._init1(param) self._init2(param, extraparams) self.set_imts_conv() self.init_monitoring(self.monitor) def _init1(self, param): if 'poes' in param: self.poes = param['poes'] if 'imtls' in param: for imt in param['imtls']: if not isinstance(imt, str): raise TypeError('Expected string, got %s' % type(imt)) self.imtls = param['imtls'] elif 'hazard_imtls' in param: self.imtls = imt_module.dictarray(param['hazard_imtls']) elif not hasattr(self, 'imtls'): raise KeyError('Missing imtls in ContextMaker!') self.cache_distances = param.get('cache_distances', False) self.max_sites_disagg = param.get('max_sites_disagg', 10) self.time_per_task = param.get('time_per_task', 60) self.collapse_level = int(param.get('collapse_level', -1)) self.disagg_by_src = param.get('disagg_by_src', False) self.horiz_comp = param.get('horiz_comp_to_geom_mean', False) self.maximum_distance = _interp(param, 'maximum_distance', self.trt) if 'pointsource_distance' not in param: self.pointsource_distance = float( config.performance.pointsource_distance) else: self.pointsource_distance = getdefault( param['pointsource_distance'], self.trt) self.minimum_distance = param.get('minimum_distance', 0) self.investigation_time = param.get('investigation_time') self.ses_seed = param.get('ses_seed', 42) self.ses_per_logic_tree_path = param.get('ses_per_logic_tree_path', 1) self.truncation_level = param.get('truncation_level', 99.) self.phi_b = ndtr(self.truncation_level) self.num_epsilon_bins = param.get('num_epsilon_bins', 1) self.disagg_bin_edges = param.get('disagg_bin_edges', {}) self.ps_grid_spacing = param.get('ps_grid_spacing') self.split_sources = self.oq.split_sources for gsim in self.gsims: if hasattr(gsim, 'set_tables'): if len(self.mags) == 0 and not is_modifiable(gsim): raise ValueError( 'You must supply a list of magnitudes as 2-digit ' 'strings, like mags=["6.00", "6.10", "6.20"]') gsim.set_tables(self.mags, self.imtls) def _init2(self, param, extraparams): for req in self.REQUIRES: reqset = set() for gsim in self.gsims: reqset.update(getattr(gsim, 'REQUIRES_' + req)) if getattr(self.oq, 'af', None) and req == 'SITES_PARAMETERS': reqset.add('ampcode') if is_modifiable(gsim) and req == 'SITES_PARAMETERS': reqset.add('vs30') # required by the ModifiableGMPE reqset.update(gsim.gmpe.REQUIRES_SITES_PARAMETERS) if 'apply_swiss_amplification' in gsim.params: reqset.add('amplfactor') if ('apply_swiss_amplification_sa' in gsim.params): reqset.add('ch_ampl03') reqset.add('ch_ampl06') reqset.add('ch_phis2s03') reqset.add('ch_phis2s06') reqset.add('ch_phiss03') reqset.add('ch_phiss06') setattr(self, 'REQUIRES_' + req, reqset) self.min_iml = self.oq.min_iml self.reqv = param.get('reqv') if self.reqv is not None: self.REQUIRES_DISTANCES.add('repi') # NB: REQUIRES_DISTANCES is empty when gsims = [FromFile] REQUIRES_DISTANCES = self.REQUIRES_DISTANCES | {'rrup'} reqs = (sorted(self.REQUIRES_RUPTURE_PARAMETERS) + sorted(self.REQUIRES_SITES_PARAMETERS | set(extraparams)) + sorted(REQUIRES_DISTANCES)) dic = {} for req in reqs: if req in site_param_dt: dt = site_param_dt[req] if isinstance(dt, tuple): # (string_, size) dic[req] = b'X' * dt[1] else: dic[req] = dt(0) else: dic[req] = 0. dic['src_id'] = I32(0) dic['rup_id'] = U32(0) dic['sids'] = U32(0) dic['rrup'] = F64(0) dic['occurrence_rate'] = F64(0) self.defaultdict = dic self.shift_hypo = param.get('shift_hypo')
[docs] def init_monitoring(self, monitor): # instantiating child monitors, may be called in the workers self.pla_mon = monitor('planar contexts', measuremem=False) self.ctx_mon = monitor('nonplanar contexts', measuremem=False) self.gmf_mon = monitor('computing mean_std', measuremem=False) self.poe_mon = monitor('get_poes', measuremem=False) self.ir_mon = monitor('iter_ruptures', measuremem=False) self.sec_mon = monitor('building dparam', measuremem=True) self.delta_mon = monitor('getting delta_rates', measuremem=False) self.task_no = getattr(monitor, 'task_no', 0) self.out_no = getattr(monitor, 'out_no', self.task_no) self.cfactor = numpy.zeros(2)
[docs] def copy(self, **kw): """ :returns: a copy of the ContextMaker with modified attributes """ new = copy.copy(self) for k, v in kw.items(): setattr(new, k, v) if 'imtls' in kw: new.set_imts_conv() return new
[docs] def restrict(self, imts): """ :param imts: a list of IMT strings subset of the full list :returns: a new ContextMaker involving less IMTs """ new = copy.copy(self) new.imtls = DictArray({imt: self.imtls[imt] for imt in imts}) new.set_imts_conv() return new
[docs] def set_imts_conv(self): """ Set the .imts list and .conv dictionary for the horizontal component conversion (if any). Also set the .loglevels. """ self.loglevels = DictArray(self.imtls) if self.imtls else {} with warnings.catch_warnings(): # avoid RuntimeWarning: divide by zero encountered in log warnings.simplefilter("ignore") for imt, imls in self.imtls.items(): if imt != 'MMI': self.loglevels[imt] = numpy.log(imls) self.imts = tuple(imt_module.from_string(im) for im in self.imtls) self.conv = {} # gsim -> imt -> (conv_median, conv_sigma, rstd) if not self.horiz_comp: return # do not convert for gsim in self.gsims: self.conv[gsim] = {} imc = gsim.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT if imc.name == 'GEOMETRIC_MEAN': pass # nothing to do elif imc.name in OK_COMPONENTS: dic = {imt: imc.apply_conversion(imt) for imt in self.imts} self.conv[gsim].update(dic) else: logging.info(f'Conversion from {imc.name} not applicable to' f' {gsim.__class__.__name__}')
[docs] def split(self, blocksize): """ Split the ContextMaker by blocks of GSIMs """ for gid, wei, gsims in zip(block_splitter(self.gid, blocksize), block_splitter(self.wei, blocksize), block_splitter(self.gsims, blocksize)): new = copy.copy(self) new.gsims = gsims new.gid = gid new.wei = wei yield new
[docs] def horiz_comp_to_geom_mean(self, mean_stds, gsim): """ This function converts ground-motion obtained for a given description of horizontal component into ground-motion values for geometric_mean. The conversion equations used are from: - Beyer and Bommer (2006): for arithmetic mean, GMRot and random - Boore and Kishida (2017): for RotD50 """ if not self.conv[gsim]: return for m, imt in enumerate(self.imts): me, si, _ta, _ph = mean_stds[:, m] conv_median, conv_sigma, rstd = self.conv[gsim][imt] me[:] = numpy.log(numpy.exp(me) / conv_median) si[:] = ((si**2 - conv_sigma**2) / rstd**2)**0.5
@property def Z(self): """ :returns: the number of realizations associated to self """ return sum(len(rlzs) for rlzs in self.gsims.values())
[docs] def new_ctx(self, size): """ :returns: a recarray of the given size full of zeros """ return RecordBuilder(**self.defaultdict).zeros(size)
[docs] def recarray(self, ctxs): """ :params ctxs: a non-empty list of homogeneous contexts :returns: a recarray, possibly collapsed """ assert ctxs dd = self.defaultdict.copy() if not hasattr(ctxs[0], 'probs_occur'): for ctx in ctxs: ctx.probs_occur = numpy.zeros(0) np = 0 else: shps = [ctx.probs_occur.shape for ctx in ctxs] np = max(i[1] if len(i) > 1 else i[0] for i in shps) dd['probs_occur'] = numpy.zeros(np) C = sum(len(ctx) for ctx in ctxs) ra = RecordBuilder(**dd).zeros(C) start = 0 for ctx in ctxs: if self.minimum_distance: for name in self.REQUIRES_DISTANCES: array = ctx[name] small_distances = array < self.minimum_distance if small_distances.any(): array = numpy.array(array) # make a copy first array[small_distances] = self.minimum_distance ctx[name] = array slc = slice(start, start + len(ctx)) for par in dd: if par == 'rup_id': val = getattr(ctx, par) else: val = getattr(ctx, par, numpy.nan) if par == 'clon_clat': ra['clon'][slc] = ctx.clon ra['clat'][slc] = ctx.clat else: getattr(ra, par)[slc] = val ra.sids[slc] = ctx.sids start = slc.stop return ra
[docs] def get_ctx_params(self): """ :returns: the interesting attributes of the context """ params = {'occurrence_rate', 'sids', 'src_id', 'probs_occur', 'clon', 'clat', 'rrup'} params.update(self.REQUIRES_RUPTURE_PARAMETERS) for dparam in self.REQUIRES_DISTANCES: params.add(dparam + '_') return params
[docs] def from_planar(self, rup, hdist, step, point='TC', toward_azimuth=90., direction='positive'): """ :param rup: a BaseRupture instance with a PlanarSurface and site parameters :returns: a context array for the sites around the rupture """ sitecol = SiteCollection.from_planar( rup, point='TC', toward_azimuth=toward_azimuth, direction=direction, hdist=hdist, step=step, req_site_params=self.REQUIRES_SITES_PARAMETERS) ctxs = list(self.genctxs([rup], sitecol, src_id=0)) return self.recarray(ctxs)
[docs] def from_srcs(self, srcs, sitecol): # used in disagg.disaggregation """ :param srcs: a list of Source objects :param sitecol: a SiteCollection instance :returns: a list of context arrays """ ctxs = [] srcfilter = SourceFilter(sitecol, self.maximum_distance) for i, src in enumerate(srcs): if src.id == -1: # not set yet src.id = i sites = srcfilter.get_close_sites(src) if sites is not None: ctxs.extend(self.get_ctx_iter(src, sites)) return concat(ctxs)
[docs] def get_rparams(self, rup): """ :returns: a dictionary with the rupture parameters """ dic = {} if hasattr(self, 'dparam') and self.dparam: msparam = rup.surface.msparam else: msparam = None for param in self.REQUIRES_RUPTURE_PARAMETERS: if param == 'mag': value = numpy.round(rup.mag, 3) elif param == 'strike': if msparam: value = msparam['strike'] else: value = rup.surface.get_strike() elif param == 'dip': if msparam: value = msparam['dip'] else: value = rup.surface.get_dip() elif param == 'rake': value = rup.rake elif param == 'ztor': if msparam: value = msparam['ztor'] else: value = rup.surface.get_top_edge_depth() elif param == 'hypo_lon': value = rup.hypocenter.longitude elif param == 'hypo_lat': value = rup.hypocenter.latitude elif param == 'hypo_depth': value = rup.hypocenter.depth elif param == 'width': if msparam: value = msparam['width'] else: value = rup.surface.get_width() elif param == 'in_cshm': # used in McVerry and Bradley GMPEs if rup.surface: # this is really expensive lons = rup.surface.mesh.lons.flatten() lats = rup.surface.mesh.lats.flatten() points_in_polygon = ( shapely.geometry.Point(lon, lat).within(cshm_polygon) for lon, lat in zip(lons, lats)) value = any(points_in_polygon) else: value = False elif param == 'zbot': # needed for width estimation in CampbellBozorgnia2014 if msparam: value = msparam['zbot'] elif rup.surface and hasattr(rup, 'surfaces'): value = rup.surface.zbot elif rup.surface: value = rup.surface.mesh.depths.max() else: value = rup.hypocenter.depth else: raise ValueError('%s requires unknown rupture parameter %r' % (type(self).__name__, param)) dic[param] = value dic['occurrence_rate'] = getattr(rup, 'occurrence_rate', numpy.nan) if hasattr(rup, 'temporal_occurrence_model'): if isinstance(rup.temporal_occurrence_model, NegativeBinomialTOM): dic['probs_occur'] = rup.temporal_occurrence_model.get_pmf( rup.occurrence_rate) elif hasattr(rup, 'probs_occur'): dic['probs_occur'] = rup.probs_occur return dic
[docs] def genctxs(self, same_mag_rups, sites, src_id): """ :params same_mag_rups: a list of ruptures :param sites: a (filtered) site collection :param src_id: source index :yields: a context array for each rupture """ magdist = self.maximum_distance(same_mag_rups[0].mag) dparam = getattr(self, 'dparam', None) for rup in same_mag_rups: if dparam: rrups = _get(rup.surface.surfaces, 'rrup', dparam) rrup = numpy.min(rrups, axis=0) else: rrup = get_distances(rup, sites, 'rrup') mask = rrup <= magdist if not mask.any(): continue r_sites = sites.filter(mask) # to debug you can insert here # print(rup.surface.tor.get_tuw_df(r_sites)) # import pdb; pdb.set_trace() ''' # sanity check true_rrup = rup.surface.get_min_distance(r_sites) numpy.testing.assert_allclose(true_rrup, rrup[mask]) ''' rparams = self.get_rparams(rup) dd = self.defaultdict.copy() np = len(rparams.get('probs_occur', [])) dd['probs_occur'] = numpy.zeros(np) ctx = RecordBuilder(**dd).zeros(len(r_sites)) for par, val in rparams.items(): ctx[par] = val ctx.rrup = rrup[mask] ctx.sids = r_sites.sids params = self.REQUIRES_DISTANCES - {'rrup'} if self.fewsites or 'clon' in params or 'clat' in params: params.add('clon_clat') # compute tu only once if dparam and ('rx' in params or 'ry0' in params): tu = _get_tu(rup, dparam, mask) else: tu = None for param in params - {'clon', 'clat'}: set_distances(ctx, rup, r_sites, param, dparam, mask, tu) # Equivalent distances reqv_obj = (self.reqv.get(self.trt) if self.reqv else None) if reqv_obj and not rup.surface: # PointRuptures have no surface reqv = reqv_obj.get(ctx.repi, rup.mag) if 'rjb' in self.REQUIRES_DISTANCES: ctx.rjb = reqv if 'rrup' in self.REQUIRES_DISTANCES: ctx.rrup = numpy.sqrt(reqv**2 + rup.hypocenter.depth**2) for name in r_sites.array.dtype.names: setattr(ctx, name, r_sites[name]) ctx.src_id = src_id if src_id >= 0: ctx.rup_id = rup.rup_id yield ctx
# this is called for non-point sources (or point sources in preclassical)
[docs] def gen_contexts(self, rups_sites, src_id): """ :yields: the old-style RuptureContexts generated by the source """ for rups, sites in rups_sites: # ruptures with the same magnitude yield from self.genctxs(rups, sites, src_id)
[docs] def get_ctx_iter(self, src, sitecol, src_id=0, step=1): """ :param src: a source object (already split) or a list of ruptures :param sitecol: a (filtered) SiteCollection :param src_id: integer source ID used where src is actually a list :param step: > 1 only in preclassical :returns: iterator over recarrays """ self.fewsites = len(sitecol.complete) <= self.max_sites_disagg if self.fewsites or 'clon' in self.REQUIRES_DISTANCES: self.defaultdict['clon'] = F64(0.) self.defaultdict['clat'] = F64(0.) if getattr(src, 'location', None) and step == 1: return self.pla_mon.iter(genctxs_Pp(src, sitecol, self)) elif hasattr(src, 'source_id'): # other source if src.code == b'F' and step == 1: with self.sec_mon: self.dparam = _build_dparam(src, sitecol, self) else: self.dparam = None minmag = self.maximum_distance.x[0] maxmag = self.maximum_distance.x[-1] with self.ir_mon: allrups = list(src.iter_ruptures( shift_hypo=self.shift_hypo, step=step)) for i, rup in enumerate(allrups): rup.rup_id = src.offset + i allrups = sorted([rup for rup in allrups if minmag < rup.mag < maxmag], key=bymag) if not allrups: return iter([]) self.num_rups = len(allrups) # sorted by mag by construction u32mags = U32([rup.mag * 100 for rup in allrups]) rups_sites = [(rups, sitecol) for rups in split_array( numpy.array(allrups), u32mags)] src_id = src.id else: # in event based we get a list with a single rupture rups_sites = [(src, sitecol)] self.dparam = None src_id = -1 ctxs = self.gen_contexts(rups_sites, src_id) blocks = block_splitter(ctxs, 10_000, weight=len) # the weight of 10_000 ensure less than 1MB per block (recarray) return self.ctx_mon.iter(map(self.recarray, blocks))
[docs] def max_intensity(self, sitecol1, mags, dists): """ :param sitecol1: a SiteCollection instance with a single site :param mags: a sequence of magnitudes :param dists: a sequence of distances :returns: an array of GMVs of shape (#mags, #dists) """ assert len(sitecol1) == 1, sitecol1 nmags, ndists = len(mags), len(dists) gmv = numpy.zeros((nmags, ndists)) for m, d in itertools.product(range(nmags), range(ndists)): mag, dist = mags[m], dists[d] ctx = RuptureContext() for par in self.REQUIRES_RUPTURE_PARAMETERS: setattr(ctx, par, 0) for dst in self.REQUIRES_DISTANCES: setattr(ctx, dst, numpy.array([dist])) for par in self.REQUIRES_SITES_PARAMETERS: setattr(ctx, par, getattr(sitecol1, par)) ctx.sids = sitecol1.sids ctx.mag = mag ctx.width = .01 # 10 meters to avoid warnings in abrahamson_2014 try: maxmean = self.get_mean_stds([ctx])[0].max() # shape NM except ValueError: # magnitude outside of supported range continue else: gmv[m, d] = numpy.exp(maxmean) return gmv
[docs] def get_occ_rates(self, ctxt): """ :param ctxt: context array generated by this ContextMaker :returns: occurrence rates, possibly from probs_occur[0] """ # thanks to split_by_tom we can assume ctx to be homogeneous if numpy.isfinite(ctxt[0].occurrence_rate): return ctxt.occurrence_rate else: probs = [rec.probs_occur[0] for rec in ctxt] return -numpy.log(probs) / self.investigation_time
# not used by the engine, is is meant for notebooks
[docs] def get_poes(self, srcs, sitecol, tom=None, rup_mutex={}, collapse_level=-1): """ :param srcs: a list of sources with the same TRT :param sitecol: a SiteCollection instance with N sites :returns: an array of PoEs of shape (N, L, G) """ ctxs = self.from_srcs(srcs, sitecol) return self.get_pmap(ctxs, tom, rup_mutex).array
def _gen_poes(self, ctx): from openquake.hazardlib.site_amplification import get_poes_site (M, L1), G = self.loglevels.array.shape, len(self.gsims) # split large context arrays to avoid filling the CPU cache with self.gmf_mon: # split_by_mag=False because already contains a single mag mean_stdt = self.get_mean_stds([ctx], split_by_mag=False) # making plenty of slices so that the array `poes` is small for slc in split_in_slices(len(ctx), 2*L1): with self.poe_mon: # this is allocating at most a few MB of RAM poes = numpy.zeros((slc.stop-slc.start, M*L1, G), F32) # NB: using .empty would break the MixtureModelGMPETestCase for g, gsim in enumerate(self.gsims): ms = mean_stdt[:2, g, :, slc] # builds poes of shape (n, L, G) if self.oq.af: # amplification method poes[:, :, g] = get_poes_site(ms, self, ctx[slc]) else: # regular case set_poes(gsim, ms, self, ctx, poes[:, :, g], slc) yield poes, mean_stdt[0, :, :, slc], mean_stdt[1, :, :, slc], slc #cs, ms, ps = ctx.nbytes/TWO20, mean_stdt.nbytes/TWO20, poes.nbytes/TWO20 #print('C=%.1fM, mean_stds=%.1fM, poes=%.1fM, G=%d' % (cs, ms, ps, G))
[docs] def gen_poes(self, ctx): """ :param ctx: a vectorized context (recarray) of size N :param rup_indep: rupture flag (false for mutex ruptures) :yields: poes, mea_sig, ctxt with poes of shape (N, L, G) """ ctx.mag = numpy.round(ctx.mag, 3) for mag in numpy.unique(ctx.mag): ctxt = ctx[ctx.mag == mag] self.cfactor += [len(ctxt), 1] for poes, mea, sig, slc in self._gen_poes(ctxt): yield poes, mea, sig, ctxt[slc]
# documented but not used in the engine
[docs] def get_pmap(self, ctxs, tom=None, rup_mutex={}): """ :param ctxs: a list of context arrays (only one for poissonian ctxs) :param tom: temporal occurrence model (default PoissonTom) :param rup_mutex: dictionary of weights (default empty) :returns: a MapArray """ rup_indep = not rup_mutex sids = numpy.unique(ctxs[0].sids) pmap = MapArray(sids, size(self.imtls), len(self.gsims)).fill(rup_indep) ptom = PoissonTOM(self.investigation_time) for ctx in ctxs: self.update(pmap, ctx, tom or ptom, rup_mutex) return ~pmap if rup_indep else pmap
[docs] def ratesNLG(self, srcgroup, sitecol): """ Used for debugging simple sources :param srcgroup: a group of sources :param sitecol: a SiteCollection instance :returns: an array of annual rates of shape (N, L, G) """ pmap = self.get_pmap(self.from_srcs(srcgroup, sitecol)) return (~pmap).to_rates()
[docs] def update(self, pmap, ctx, rup_mutex=None): """ :param pmap: probability map to update :param ctx: a context array :param rup_mutex: dictionary (src_id, rup_id) -> weight """ for poes, mea, sig, ctxt in self.gen_poes(ctx): if rup_mutex: pmap.update_mutex(poes, ctxt, self.tom.time_span, rup_mutex) elif self.cluster: for poe, sidx in zip(poes, pmap.sidx[ctxt.sids]): pmap.array[sidx] *= 1. - poe else: pmap.update_indep(poes, ctxt, self.tom.time_span)
# called by gen_poes and by the GmfComputer
[docs] def get_mean_stds(self, ctxs, split_by_mag=True): """ :param ctxs: a list of contexts with N=sum(len(ctx) for ctx in ctxs) :param split_by_mag: where to split by magnitude :returns: an array of shape (4, G, M, N) with mean and stddevs """ N = sum(len(ctx) for ctx in ctxs) M = len(self.imts) G = len(self.gsims) out = numpy.zeros((4, G, M, N)) if all(isinstance(ctx, numpy.recarray) for ctx in ctxs): # contexts already vectorized recarrays = ctxs else: # vectorize the contexts recarrays = [self.recarray(ctxs)] if split_by_mag: recarr = numpy.concatenate( recarrays, dtype=recarrays[0].dtype).view(numpy.recarray) recarrays = split_array(recarr, U32(numpy.round(recarr.mag*100))) for g, gsim in enumerate(self.gsims): out[:, g] = self.get_4MN(recarrays, gsim) return out
[docs] def get_4MN(self, ctxs, gsim): """ Called by the GmfComputer """ N = sum(len(ctx) for ctx in ctxs) M = len(self.imts) out = numpy.zeros((4, M, N)) gsim.adj = [] # NSHM2014P adjustments compute = gsim.__class__.compute start = 0 for ctx in ctxs: slc = slice(start, start + len(ctx)) adj = compute(gsim, ctx, self.imts, *out[:, :, slc]) if adj is not None: gsim.adj.append(adj) start = slc.stop if self.truncation_level not in (0, 1E-9, 99.) and (out[1] == 0.).any(): raise ValueError('Total StdDev is zero for %s' % gsim) if gsim.adj: gsim.adj = numpy.concatenate(gsim.adj) if self.conv: # apply horizontal component conversion self.horiz_comp_to_geom_mean(out, gsim) return out
# not used right now
[docs] def get_att_curves(self, site, msr, mag, aratio=1., strike=0., dip=45., rake=-90): """ :returns: 4 attenuation curves mea, sig, tau, phi (up to 500 km from the site at steps of 5 km) """ from openquake.hazardlib.source import rupture rup = rupture.get_planar( site, msr, mag, aratio, strike, dip, rake, self.trt) ctx = self.from_planar(rup, hdist=500, step=5) mea, sig, tau, phi = self.get_mean_stds([ctx]) return (interp1d(ctx.rrup, mea), interp1d(ctx.rrup, sig), interp1d(ctx.rrup, tau), interp1d(ctx.rrup, phi))
[docs] def estimate_sites(self, src, sites): """ :param src: a (Collapsed)PointSource :param sites: a filtered SiteCollection :returns: how many sites are impacted overall """ magdist = {mag: self.maximum_distance(mag) for mag, rate in src.get_annual_occurrence_rates()} nphc = src.count_nphc() dists = sites.get_cdist(src.location) planardict = src.get_planar(iruptures=True) esites = 0 for m, (mag, [planar]) in enumerate(planardict.items()): rrup = dists[dists < magdist[mag]] nclose = (rrup < src.get_psdist(m, mag, self.pointsource_distance, magdist)).sum() nfar = len(rrup) - nclose esites += nclose * nphc + nfar return esites
# tested in test_collapse_small
[docs] def estimate_weight(self, src, srcfilter, multiplier=1): """ :param src: a source object :param srcfilter: a SourceFilter instance :returns: (weight, estimate_sites) """ sites = srcfilter.get_close_sites(src) if sites is None: # may happen for CollapsedPointSources return 0, 0 src.nsites = len(sites) N = len(srcfilter.sitecol.complete) # total sites if (hasattr(src, 'location') and src.count_nphc() > 1 and self.pointsource_distance < 1000): # cps or pointsource with nontrivial nphc esites = self.estimate_sites(src, sites) * multiplier else: step = 100 if src.code == b'F' else 10 ctxs = list(self.get_ctx_iter(src, sites, step=step)) # reduced if not ctxs: return src.num_ruptures if N == 1 else 0, 0 esites = (sum(len(ctx) for ctx in ctxs) * src.num_ruptures / self.num_rups * multiplier) # num_rups from get_ctx_iter weight = esites / N # the weight is the effective number of ruptures return weight, int(esites)
[docs] def set_weight(self, sources, srcfilter, multiplier=1, mon=Monitor()): """ Set the weight attribute on each prefiltered source """ if hasattr(srcfilter, 'array'): # a SiteCollection was passed srcfilter = SourceFilter(srcfilter, self.maximum_distance) G = len(self.gsims) for src in sources: if src.nsites == 0: # was discarded by the prefiltering src.esites = 0 src.weight = .01 else: with mon: src.weight, src.esites = self.estimate_weight( src, srcfilter, multiplier) if src.weight == 0: src.weight = 0.001 src.weight *= G if src.code == b'P': src.weight += .1 elif src.code == b'C': src.weight += 10. elif src.code == b'F': src.weight += .25 * src.num_ruptures else: src.weight += 1.
[docs]def by_dists(gsim): return tuple(sorted(gsim.REQUIRES_DISTANCES))
# see contexts_tests.py for examples of collapse # probs_occur = functools.reduce(combine_pmf, (r.probs_occur for r in rups))
[docs]def combine_pmf(o1, o2): """ Combine probabilities of occurrence; used to collapse nonparametric ruptures. :param o1: probability distribution of length n1 :param o2: probability distribution of length n2 :returns: probability distribution of length n1 + n2 - 1 >>> combine_pmf([.99, .01], [.98, .02]) array([9.702e-01, 2.960e-02, 2.000e-04]) """ n1 = len(o1) n2 = len(o2) o = numpy.zeros(n1 + n2 - 1) for i in range(n1): for j in range(n2): o[i + j] += o1[i] * o2[j] return o
def _get_poes(mean_std, loglevels, phi_b): # returns a matrix of shape (N, L) N = mean_std.shape[2] # shape (2, M, N) out = numpy.zeros((loglevels.size, N), F32) # shape (L, N) _set_poes(mean_std, loglevels, phi_b, out) return out.T
[docs]def set_poes(gsim, mean_std, cmaker, ctx, out, slc): """ Calculate and return probabilities of exceedance (PoEs) of one or more intensity measure levels (IMLs) of one intensity measure type (IMT) for one or more pairs "site -- rupture". :param gsim: A GMPE instance :param mean_std: An array of shape (2, M, N) with mean and standard deviations for the sites and intensity measure types :param cmaker: A ContextMaker instance, used only in nhsm_2014 :param ctx: A context array used only in avg_poe_gmpe :param out: An array of PoEs of shape (N, L) to be filled :param slc: A slice object used only in avg_poe_gmpe :raises ValueError: If truncation level is not ``None`` and neither non-negative float number, and if ``imts`` dictionary contain wrong or unsupported IMTs (see :attr:`DEFINED_FOR_INTENSITY_MEASURE_TYPES`). """ loglevels = cmaker.loglevels.array phi_b = cmaker.phi_b _M, L1 = loglevels.shape if hasattr(gsim, 'weights_signs'): # for nshmp_2014, case_72 adj = gsim.adj[slc] outs = [] weights, signs = zip(*gsim.weights_signs) for s in signs: ms = numpy.array(mean_std) # make a copy for m in range(len(loglevels)): ms[0, m] += s * adj outs.append(_get_poes(ms, loglevels, phi_b)) out[:] = numpy.average(outs, weights=weights, axis=0) elif hasattr(gsim, 'mixture_model'): for f, w in zip(gsim.mixture_model["factors"], gsim.mixture_model["weights"]): mean_stdi = mean_std.copy() mean_stdi[1] *= f # multiply stddev by factor out[:] += w * _get_poes(mean_stdi, loglevels, phi_b) elif hasattr(gsim, 'weights'): # avg_poe_gmpe cm = copy.copy(cmaker) cm.poe_mon = Monitor() # avoid double counts cm.gsims = gsim.gsims avgs = [] for poes, _mea, _sig, _ctx in cm.gen_poes(ctx[slc]): # poes has shape N, L, G avgs.append(poes @ gsim.weights) out[:] = numpy.concatenate(avgs) else: # regular case _set_poes(mean_std, loglevels, phi_b, out.T) imtweight = getattr(gsim, 'weight', None) # ImtWeight or None for m, imt in enumerate(cmaker.imtls): mL1 = m * L1 if imtweight and imtweight.dic.get(imt) == 0: # set by the engine when parsing the gsim logictree # when 0 ignore the contribution: see _build_branches out[:, mL1:mL1 + L1] = 0
[docs]class PmapMaker(object): """ A class to compute the PoEs from a given source """ def __init__(self, cmaker, srcfilter, group): vars(self).update(vars(cmaker)) self.cmaker = cmaker self.srcfilter = srcfilter self.N = len(self.srcfilter.sitecol.complete) try: self.sources = group.sources except AttributeError: # already a list of sources self.sources = group self.src_mutex = getattr(group, 'src_interdep', None) == 'mutex' self.rup_indep = getattr(group, 'rup_interdep', None) != 'mutex' if self.rup_indep: self.rup_mutex = {} else: self.rup_mutex = {} # src_id, rup_id -> rup_weight for src in group: for i, (rup, _) in enumerate(src.data): self.rup_mutex[src.id, i] = rup.weight self.fewsites = self.N <= cmaker.max_sites_disagg self.grp_probability = getattr(group, 'grp_probability', 1.) self.cluster = self.cmaker.cluster = getattr(group, 'cluster', 0) if self.cluster: tom = group.temporal_occurrence_model else: tom = getattr(self.sources[0], 'temporal_occurrence_model', PoissonTOM(self.cmaker.investigation_time)) self.cmaker.tom = self.tom = tom M, G = len(self.cmaker.imtls), len(self.cmaker.gsims) self.maxsize = 8 * TWO20 // (M*G) # crucial for a fast get_mean_stds
[docs] def count_bytes(self, ctxs): # # usuful for debugging memory issues rparams = len(self.cmaker.REQUIRES_RUPTURE_PARAMETERS) sparams = len(self.cmaker.REQUIRES_SITES_PARAMETERS) + 1 dparams = len(self.cmaker.REQUIRES_DISTANCES) nbytes = 0 for ctx in ctxs: nsites = len(ctx) nbytes += 8 * rparams nbytes += 8 * sparams * nsites nbytes += 8 * dparams * nsites return nbytes
[docs] def gen_ctxs(self, src): sites = self.srcfilter.get_close_sites(src) if sites is None: return for ctx in self.cmaker.get_ctx_iter(src, sites): if self.cmaker.deltagetter: # adjust occurrence rates in case of aftershocks with self.cmaker.delta_mon: delta = self.cmaker.deltagetter(src.id) ctx.occurrence_rate += delta[ctx.rup_id] if self.fewsites: # keep rupdata in memory (before collapse) if self.src_mutex: # needed for Disaggregator.init ctx.src_id = valid.fragmentno(src) self.rupdata.append(ctx) yield ctx
def _make_src_indep(self): # sources with the same ID cm = self.cmaker allctxs = [] ctxlen = 0 totlen = 0 t0 = time.time() sids = self.srcfilter.sitecol.sids # using most memory here; limited by pmap_max_gb pnemap = MapArray( sids, self.cmaker.imtls.size, len(self.cmaker.gsims), not self.cluster).fill(self.cluster) for src in self.sources: src.nsites = 0 for ctx in self.gen_ctxs(src): ctxlen += len(ctx) src.nsites += len(ctx) totlen += len(ctx) allctxs.append(ctx) if ctxlen > self.maxsize: for ctx in concat(allctxs): cm.update(pnemap, ctx) allctxs.clear() ctxlen = 0 if allctxs: # all sources have the same tom by construction for ctx in concat(allctxs): cm.update(pnemap, ctx) allctxs.clear() dt = time.time() - t0 nsrcs = len(self.sources) for src in self.sources: self.source_data['src_id'].append(src.source_id) self.source_data['grp_id'].append(src.grp_id) self.source_data['nsites'].append(src.nsites) self.source_data['esites'].append(src.esites) self.source_data['nrupts'].append(src.num_ruptures) self.source_data['weight'].append(src.weight) self.source_data['ctimes'].append( dt * src.nsites / totlen if totlen else dt / nsrcs) self.source_data['taskno'].append(cm.task_no) return pnemap def _make_src_mutex(self): # used in Japan (case_27) and in New Madrid (case_80) cm = self.cmaker t0 = time.time() weight = 0. nsites = 0 esites = 0 nctxs = 0 sids = self.srcfilter.sitecol.sids pmap = MapArray( sids, self.cmaker.imtls.size, len(self.cmaker.gsims)).fill(0) for src in self.sources: t0 = time.time() pm = MapArray(pmap.sids, cm.imtls.size, len(cm.gsims)).fill(self.rup_indep) ctxs = list(self.gen_ctxs(src)) n = sum(len(ctx) for ctx in ctxs) if n == 0: continue nctxs += len(ctxs) nsites += n esites += src.esites for ctx in ctxs: if self.rup_mutex: cm.update(pm, ctx, self.rup_mutex) else: cm.update(pm, ctx) if hasattr(src, 'mutex_weight'): arr = 1. - pm.array if self.rup_indep else pm.array pmap.array += arr * src.mutex_weight else: pmap.array = 1. - (1-pmap.array) * (1-pm.array) weight += src.weight pmap.array *= self.grp_probability dt = time.time() - t0 self.source_data['src_id'].append(valid.basename(src)) self.source_data['grp_id'].append(src.grp_id) self.source_data['nsites'].append(nsites) self.source_data['esites'].append(esites) self.source_data['nrupts'].append(nctxs) self.source_data['weight'].append(weight) self.source_data['ctimes'].append(dt) self.source_data['taskno'].append(cm.task_no) return ~pmap
[docs] def make(self): dic = {} self.rupdata = [] self.source_data = AccumDict(accum=[]) if self.rup_indep and not self.src_mutex: pnemap = self._make_src_indep() else: pnemap = self._make_src_mutex() if self.cluster: for nocc in range(0, 50): prob_n_occ = self.tom.get_probability_n_occurrences( self.tom.occurrence_rate, nocc) if nocc == 0: pmapclu = pnemap.new(numpy.full(pnemap.shape, prob_n_occ)) else: pmapclu.array += pnemap.array**nocc * prob_n_occ pnemap.array[:] = pmapclu.array dic['rmap'] = pnemap.to_rates() dic['rmap'].gid = self.cmaker.gid dic['cfactor'] = self.cmaker.cfactor dic['rup_data'] = concat(self.rupdata) dic['source_data'] = self.source_data dic['task_no'] = self.task_no dic['grp_id'] = self.sources[0].grp_id if self.disagg_by_src: # all the sources in the group must have the same source_id because # of the groupby(group, corename) in classical.py coreids = set(map(valid.corename, self.sources)) if len(coreids) > 1: raise NameError('Invalid source naming: %s' % coreids) # in oq-risk-tests test_phl there are multiple srcids # (mps-0!b1;0, mps-0!b1;1, ...); you can simply use the first, # since in `store_mean_rates_by_src` we use corename dic['basename'] = valid.basename(self.sources[0]) return dic
[docs]class BaseContext(metaclass=abc.ABCMeta): """ Base class for context object. """ def __eq__(self, other): """ Return True if ``other`` has same attributes with same values. """ if isinstance(other, self.__class__): if self._slots_ == other._slots_: oks = [] for s in self._slots_: a, b = getattr(self, s, None), getattr(other, s, None) if a is None and b is None: ok = True elif a is None and b is not None: ok = False elif a is not None and b is None: ok = False elif hasattr(a, 'shape') and hasattr(b, 'shape'): if a.shape == b.shape: ok = numpy.allclose(a, b) else: ok = False else: ok = a == b oks.append(ok) return numpy.all(oks) return False
# mock of a site collection used in the tests and in the SMT
[docs]class SitesContext(BaseContext): """ Sites calculation context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant features of the sites collection. Every GSIM class is required to declare what :attr:`sites parameters <GroundShakingIntensityModel.REQUIRES_SITES_PARAMETERS>` does it need. Only those required parameters are made available in a result context object. """ # _slots_ is used in hazardlib check_gsim and in the SMT def __init__(self, slots='vs30 vs30measured z1pt0 z2pt5'.split(), sitecol=None): self._slots_ = slots if sitecol is not None: self.sids = sitecol.sids for slot in slots: setattr(self, slot, getattr(sitecol, slot)) # used in the SMT def __len__(self): return len(self.sids)
[docs]class DistancesContext(BaseContext): """ Distances context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant distances between sites from the collection and the rupture. Every GSIM class is required to declare what :attr:`distance measures <GroundShakingIntensityModel.REQUIRES_DISTANCES>` does it need. Only those required values are calculated and made available in a result context object. """ _slots_ = ('rrup', 'rx', 'rjb', 'rhypo', 'repi', 'ry0', 'rcdpp', 'azimuth', 'hanging_wall', 'rvolc') def __init__(self, param_dist_pairs=()): for param, dist in param_dist_pairs: setattr(self, param, dist)
# used in boore_atkinson_2008
[docs]def get_dists(ctx): """ Extract the distance parameters from a context. :returns: a dictionary dist_name -> distances """ return {par: dist for par, dist in vars(ctx).items() if par in KNOWN_DISTANCES}
# used to produce a RuptureContext suitable for legacy code, i.e. for calls # to .get_mean_and_stddevs, like for instance in the SMT
[docs]def full_context(sites, rup, dctx=None): """ :returns: a full RuptureContext with all the relevant attributes """ self = RuptureContext() self.src_id = 0 for par, val in vars(rup).items(): setattr(self, par, val) if not hasattr(self, 'occurrence_rate'): self.occurrence_rate = numpy.nan if hasattr(sites, 'array'): # is a SiteCollection for par in sites.array.dtype.names: setattr(self, par, sites[par]) else: # sites is a SitesContext for par, val in vars(sites).items(): setattr(self, par, val) if dctx: for par, val in vars(dctx).items(): setattr(self, par, val) return self
[docs]def get_mean_stds(gsim, ctx, imts, **kw): """ :param gsim: a single GSIM or a a list of GSIMs :param ctx: a RuptureContext or a recarray of size N with same magnitude :param imts: a list of M IMTs :param kw: additional keyword arguments :returns: an array of shape (4, M, N) obtained by applying the given GSIM, ctx amd imts, or an array of shape (G, 4, M, N) """ single = hasattr(gsim, 'compute') kw['imtls'] = {imt.string: [0] for imt in imts} cmaker = ContextMaker('*', [gsim] if single else gsim, kw) out = cmaker.get_mean_stds([ctx], split_by_mag=False) # (4, G, M, N) return out[:, 0] if single else out
# mock of a rupture used in the tests and in the SMT
[docs]class RuptureContext(BaseContext): """ Rupture calculation context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant features of a single rupture. Every GSIM class is required to declare what :attr:`rupture parameters <GroundShakingIntensityModel.REQUIRES_RUPTURE_PARAMETERS>` does it need. Only those required parameters are made available in a result context object. """ src_id = 0 rup_id = 0 _slots_ = ( 'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat', 'hypo_depth', 'width', 'hypo_loc', 'src_id', 'rup_id') def __init__(self, param_pairs=()): for param, value in param_pairs: setattr(self, param, value)
[docs] def size(self): """ If the context is a multi rupture context, i.e. it contains an array of magnitudes and it refers to a single site, returns the size of the array, otherwise returns 1. """ nsites = len(self.sids) if nsites == 1 and isinstance(self.mag, numpy.ndarray): return len(self.mag) return nsites
# used in acme_2019 def __len__(self): return len(self.sids)
[docs]class Effect(object): """ Compute the effect of a rupture of a given magnitude and distance. :param effect_by_mag: a dictionary magstring -> intensities :param dists: array of distances, one per each intensity :param cdist: collapse distance """ def __init__(self, effect_by_mag, dists, collapse_dist=None): self.effect_by_mag = effect_by_mag self.dists = dists self.nbins = len(dists)
[docs] def collapse_value(self, collapse_dist): """ :returns: intensity at collapse distance """ # get the maximum magnitude with a cutoff at 7 for mag in self.effect_by_mag: if mag > '7.00': break effect = self.effect_by_mag[mag] idx = numpy.searchsorted(self.dists, collapse_dist) return effect[idx-1 if idx == self.nbins else idx]
def __call__(self, mag, dist): di = numpy.searchsorted(self.dists, dist) if di == self.nbins: di = self.nbins eff = self.effect_by_mag['%.2f' % mag][di] return eff # this is used to compute the magnitude-dependent pointsource_distance
[docs] def dist_by_mag(self, intensity): """ :returns: a dict magstring -> distance """ dst = {} # magnitude -> distance for mag, intensities in self.effect_by_mag.items(): if intensity < intensities.min(): dst[mag] = self.dists[-1] # largest distance elif intensity > intensities.max(): dst[mag] = self.dists[0] # smallest distance else: dst[mag] = interp1d(intensities, self.dists)(intensity) return dst
[docs]def get_effect_by_mag(mags, sitecol1, gsims_by_trt, maximum_distance, imtls): """ :param mags: an ordered list of magnitude strings with format %.2f :param sitecol1: a SiteCollection with a single site :param gsims_by_trt: a dictionary trt -> gsims :param maximum_distance: an IntegrationDistance object :param imtls: a DictArray with intensity measure types and levels :returns: a dict magnitude-string -> array(#dists, #trts) """ trts = list(gsims_by_trt) ndists = 51 gmv = numpy.zeros((len(mags), ndists, len(trts))) param = dict(maximum_distance=maximum_distance, imtls=imtls) for t, trt in enumerate(trts): dist_bins = maximum_distance.get_dist_bins(trt, ndists) cmaker = ContextMaker(trt, gsims_by_trt[trt], param) gmv[:, :, t] = cmaker.max_intensity(sitecol1, F64(mags), dist_bins) return dict(zip(mags, gmv))
[docs]def get_cmakers(src_groups, full_lt, oq): """ :params src_groups: a list of SourceGroups :param full_lt: a FullLogicTree instance :param oq: object containing the calculation parameters :returns: list of ContextMakers associated to the given src_groups """ all_trt_smrs = [] for sg in src_groups: src = sg.sources[0] all_trt_smrs.append(src.trt_smrs) trts = list(full_lt.gsim_lt.values) gweights = full_lt.g_weights(all_trt_smrs)[:, -1] # shape Gt cmakers = [] for grp_id, trt_smrs in enumerate(all_trt_smrs): rlzs_by_gsim = full_lt.get_rlzs_by_gsim(trt_smrs) if not rlzs_by_gsim: # happens for gsim_lt.reduce() on empty TRTs continue trti = trt_smrs[0] // TWO24 cm = ContextMaker(trts[trti], rlzs_by_gsim, oq) cm.trti = trti cm.trt_smrs = trt_smrs cm.grp_id = grp_id cmakers.append(cm) gids = full_lt.get_gids(cm.trt_smrs for cm in cmakers) for cm in cmakers: cm.gid = gids[cm.grp_id] cm.wei = gweights[cm.gid] return cmakers
[docs]def read_cmakers(dstore, csm=None): """ :param dstore: a DataStore-like object :param csm: a CompositeSourceModel instance, if given :returns: an array of ContextMaker instances, one per source group """ from openquake.hazardlib.site_amplification import AmplFunction oq = dstore['oqparam'] oq.mags_by_trt = { k: decode(v[:]) for k, v in dstore['source_mags'].items()} if 'amplification' in oq.inputs and oq.amplification_method == 'kernel': df = AmplFunction.read_df(oq.inputs['amplification']) oq.af = AmplFunction.from_dframe(df) else: oq.af = None if csm is None: csm = dstore['_csm'] csm.full_lt = dstore['full_lt'].init() cmakers = get_cmakers(csm.src_groups, csm.full_lt, oq) if 'delta_rates' in dstore: # aftershock for cmaker in cmakers: cmaker.deltagetter = DeltaRatesGetter(dstore) return numpy.array(cmakers)
# used in event_based
[docs]def read_cmaker(dstore, trt_smr): """ :param dstore: a DataStore-like object :returns: a ContextMaker instance """ oq = dstore['oqparam'] full_lt = dstore['full_lt'] trts = list(full_lt.gsim_lt.values) trt = trts[trt_smr // len(full_lt.sm_rlzs)] rlzs_by_gsim = full_lt._rlzs_by_gsim(trt_smr) return ContextMaker(trt, rlzs_by_gsim, oq)
[docs]def get_src_mutex(srcs): """ :param srcs: a list of sources with weights and the same grp_id :returns: a dictionary grp_id -> {'src_id': [...], 'weight': [...]} """ grp_ids = [src.grp_id for src in srcs] [grp_id] = set(grp_ids) ok = all(hasattr(src, 'mutex_weight') for src in srcs) if not ok: return {grp_id: {}} dic = dict(src_ids=U32([src.id for src in srcs]), weights=F64([src.mutex_weight for src in srcs])) return {grp_id: dic}
[docs]def read_ctx_by_grp(dstore): """ :param dstore: DataStore instance :returns: dictionary grp_id -> ctx """ sitecol = dstore['sitecol'].complete.array params = {n: dstore['rup/' + n][:] for n in dstore['rup']} dtlist = [] for par, val in params.items(): if len(val) == 0: return {} elif par == 'probs_occur': item = (par, object) elif par == 'occurrence_rate': item = (par, F64) else: item = (par, val[0].dtype) dtlist.append(item) for par in sitecol.dtype.names: if par != 'sids': dtlist.append((par, sitecol.dtype[par])) ctx = numpy.zeros(len(params['grp_id']), dtlist).view(numpy.recarray) for par, val in params.items(): ctx[par] = val for par in sitecol.dtype.names: if par != 'sids': ctx[par] = sitecol[par][ctx.sids] grp_ids = numpy.unique(ctx.grp_id) ctx = ctx[numpy.argsort(ctx.mag)] # NB: crucial for performance return {grp_id: ctx[ctx.grp_id == grp_id] for grp_id in grp_ids}