Source code for openquake.hazardlib.calc.stochastic

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
:mod:`openquake.hazardlib.calc.stochastic` contains
:func:`stochastic_event_set`.
"""
import time
import numpy
import shapely
from openquake.baselib import hdf5
from openquake.baselib.general import AccumDict, random_histogram
from openquake.baselib.performance import Monitor
from openquake.hazardlib.calc.filters import nofilter, SourceFilter
from openquake.hazardlib.source.rupture import (
    BaseRupture, EBRupture, rupture_dt)
from openquake.hazardlib.geo.mesh import surface_to_arrays

TWO16 = 2 ** 16  # 65,536
TWO32 = 2 ** 32  # 4,294,967,296
F64 = numpy.float64
U16 = numpy.uint16
U32 = numpy.uint32
U8 = numpy.uint8
I32 = numpy.int32
F32 = numpy.float32
MAX_RUPTURES = 2000

# ######################## rupture calculator ############################ #


# this is really fast
[docs]def get_rup_array(ebruptures, srcfilter=nofilter, model='???', model_geom=None): """ Convert a list of EBRuptures into a numpy composite array, by filtering out the ruptures far away from every site. If a shapely polygon is passed in model_geom, ruptures outside the polygon are discarded. """ if not BaseRupture._code: BaseRupture.init() # initialize rupture codes rups = [] geoms = [] for ebrupture in ebruptures: rup = ebrupture.rupture arrays = surface_to_arrays(rup.surface) # one array per surface lons = [] lats = [] points = [] shapes = [] for array in arrays: s0, s1, s2 = array.shape assert s0 == 3, s0 assert s1 < TWO16, 'Too many lines' assert s2 < TWO16, 'The rupture mesh spacing is too small' shapes.append(s1) shapes.append(s2) lons.append(array[0].flat) lats.append(array[1].flat) points.append(array.flat) lons = numpy.concatenate(lons) lats = numpy.concatenate(lats) points = F32(numpy.concatenate(points)) shapes = U32(shapes) hypo = rup.hypocenter.x, rup.hypocenter.y, rup.hypocenter.z rec = numpy.zeros(1, rupture_dt)[0] rec['id'] = ebrupture.id rec['seed'] = ebrupture.seed rec['minlon'] = minlon = numpy.nanmin(lons) # NaNs are in KiteSurfaces rec['minlat'] = minlat = numpy.nanmin(lats) rec['maxlon'] = maxlon = numpy.nanmax(lons) rec['maxlat'] = maxlat = numpy.nanmax(lats) rec['mag'] = rup.mag rec['hypo'] = hypo rec['model'] = model # apply magnitude filtering if srcfilter.integration_distance(rup.mag) == 0: continue # apply distance filtering nsites = 0 if srcfilter.sitecol is not None: nsites = len(srcfilter.close_sids(rec, rup.tectonic_region_type)) if nsites == 0: continue # apply model filtering if any (used in `oq mosaic sample_rups`) if model_geom and not shapely.contains_xy( model_geom, hypo[0], hypo[1]): continue rate = getattr(rup, 'occurrence_rate', numpy.nan) tup = (ebrupture.id, ebrupture.seed, ebrupture.source_id, ebrupture.trt_smr, rup.code, ebrupture.n_occ, rup.mag, rup.rake, rate, minlon, minlat, maxlon, maxlat, hypo, 0, nsites, 0, model) rups.append(tup) # we are storing the geometries as arrays of 32 bit floating points; # the first element is the number of surfaces, then there are # 2 * num_surfaces integers describing the first and second # dimension of each surface, and then the lons, lats and deps of # the underlying meshes of points; in event_based/case_1 there # is a point source, i.e. planar surfaces, with shapes = [1, 4] # and points.reshape(3, 4) containing lons, lats and depths; # in classical/case_29 there is a non parametric source containing # 2 KiteSurfaces with shapes=[8, 5, 8, 5] and 240 = 3*2*8*5 coordinates # NB: the geometries are read by source.rupture.to_arrays geom = numpy.concatenate([[len(shapes) // 2], shapes, points]) geoms.append(geom) if not rups: return () dic = dict(geom=numpy.array(geoms, object)) # NB: PMFs for nonparametric ruptures are not saved since they # are useless for the GMF computation arr = numpy.array(rups, rupture_dt) return hdf5.ArrayWrapper(arr, dic)
[docs]def sample_cluster(group, num_ses, ses_seed): """ Yields ruptures generated by a cluster of sources :param group: A sequence of sources of the same group :param num_ses: Number of stochastic event sets :param ses_seed: Global seed for rupture sampling :yields: dictionaries with keys rup_array, source_data, eff_ruptures """ eb_ruptures = [] seed = group[0].serial(ses_seed) rng = numpy.random.default_rng(seed) [trt_smr] = set(src.trt_smr for src in group) # Set the parameters required to compute the number of occurrences # of the group of group samples = getattr(group[0], 'samples', 1) grp_probability = getattr(group, 'grp_probability', 1.) tom = group.temporal_occurrence_model rate = getattr(tom, 'occurrence_rate', None) if rate is None: # time dependent sources tot_num_occ = rng.poisson(grp_probability * samples * num_ses) else: # poissonian sources with ClusterPoissonTOM tot_num_occ = rng.poisson(rate * tom.time_span * samples * num_ses) # Now we process the sources included in the group. Possible cases: # * The group contains nonparametric sources with mutex ruptures, while # the sources are indepedent. # * The group contains mutually exclusive sources. In this case we # choose the source first and then some ruptures from the source. if group.rup_interdep == 'mutex' and group.src_interdep == 'indep': allrups = [] weights = [] rupids = [] for src in group: rupids.extend(src.offset + numpy.arange(src.num_ruptures)) weights.extend(src.rup_weights) src_seed = src.serial(ses_seed) for i, rup in enumerate(src.iter_ruptures()): rup.src_id = src.id allrups.append(rup) # random distribute in bins according to the rup_weights n_occs = random_histogram(tot_num_occ, weights, seed) for rup, rupid, n_occ in zip(allrups, rupids, n_occs): if n_occ: ebr = EBRupture(rup, rup.src_id, trt_smr, n_occ, rupid) ebr.seed = ebr.id + ses_seed eb_ruptures.append(ebr) elif group.src_interdep == 'mutex' and group.rup_interdep == 'indep': # random distribute in bins according to the srcs_weights ws = [src.mutex_weight for src in group] src_occs = random_histogram(tot_num_occ, ws, seed) # NB: in event_based/src_mutex num_ses=2000, samples=1 # and there are 10 sources with weights # 0.368, 0.061, 0.299, 0.049, 0.028, 0.011, 0.011, 0.018, 0.113, 0.042 # => src_occs = [758, 120, 600, 84, 58, 16, 24, 28, 230, 82] for src, src_occ in zip(group, src_occs): src_seed = src.serial(ses_seed) # random distribute in bins equally n_occs = random_histogram(src_occ, src.num_ruptures, src_seed) rseeds = src_seed + numpy.arange(src.num_ruptures) rupids = src.offset + numpy.arange(src.num_ruptures) for rup, rupid, n_occ, rseed in zip( src.iter_ruptures(), rupids, n_occs, rseeds): if n_occ: ebr = EBRupture(rup, src.id, trt_smr, n_occ, rupid) ebr.seed = ebr.id + ses_seed eb_ruptures.append(ebr) else: raise NotImplementedError( f'{group.src_interdep=}, {group.rup_interdep=}') return eb_ruptures
# NB: there is postfiltering of the ruptures, which is more efficient
[docs]def sample_ruptures(sources, cmaker, sitecol=None, monitor=Monitor()): """ :param sources: a sequence of sources of the same group :param cmaker: a ContextMaker instance with ses_per_logic_tree_path, ses_seed :param sitecol: SiteCollection instance used for filtering (None for no filtering) :param monitor: monitor instance :yields: dictionaries with keys rup_array, source_data """ model = getattr(cmaker, 'model', '???') model_geom = getattr(cmaker, 'model_geom', None) srcfilter = SourceFilter(sitecol, cmaker.maximum_distance) # AccumDict of arrays with 3 elements nsites, nruptures, calc_time source_data = AccumDict(accum=[]) # Compute and save stochastic event sets num_ses = cmaker.ses_per_logic_tree_path grp_id = sources[0].grp_id # Compute the number of occurrences of the source group. This is used # for cluster groups or groups with mutually exclusive sources. if getattr(sources, 'atomic', False): t0 = time.time() eb_ruptures = sample_cluster(sources, num_ses, cmaker.ses_seed) dt = time.time() - t0 # populate source_data tot = sum(src.num_ruptures for src in sources) for src in sources: source_data['src_id'].append(src.source_id) source_data['nsites'].append(src.nsites) source_data['nrups'].append(src.num_ruptures) source_data['ctimes'].append(dt * src.num_ruptures / tot) source_data['weight'].append(src.weight) source_data['taskno'].append(monitor.task_no) # Yield ruptures er = sum(src.num_ruptures for src in sources) dic = dict(rup_array=get_rup_array(eb_ruptures, srcfilter, model, model_geom), source_data=source_data, eff_ruptures={grp_id: er}) yield AccumDict(dic) else: eb_ruptures = [] eff_ruptures = 0 source_data = AccumDict(accum=[]) for src in sources: nr = src.num_ruptures eff_ruptures += nr if len(eb_ruptures) > MAX_RUPTURES: # yield partial result to avoid running out of memory yield AccumDict(dict( rup_array=get_rup_array( eb_ruptures, srcfilter, model, model_geom), source_data={}, eff_ruptures={})) eb_ruptures.clear() samples = getattr(src, 'samples', 1) t0 = time.time() eb_ruptures.extend( src.sample_ruptures(samples * num_ses, cmaker.ses_seed)) dt = time.time() - t0 source_data['src_id'].append(src.source_id) source_data['nsites'].append(src.nsites) source_data['nrups'].append(nr) source_data['ctimes'].append(dt) source_data['weight'].append(src.weight) source_data['taskno'].append(monitor.task_no) t0 = time.time() rup_array = get_rup_array(eb_ruptures, srcfilter, model, model_geom) dt = time.time() - t0 if len(rup_array): yield AccumDict(dict(rup_array=rup_array, source_data=source_data, eff_ruptures={grp_id: eff_ruptures}))