# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2019-2020, GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import os
import getpass
import logging
import itertools
import numpy
import pandas
from openquake.baselib import general, parallel, python3compat
from openquake.commonlib import datastore, logs
from openquake.risklib import asset, scientific, reinsurance
from openquake.calculators import base, views
from openquake.calculators.base import expose_outputs
U8 = numpy.uint8
F32 = numpy.float32
F64 = numpy.float64
U16 = numpy.uint16
U32 = numpy.uint32
[docs]class FakeBuilder:
eff_time = 0.
pla_factor = None
[docs]def fix_investigation_time(oq, dstore):
"""
If starting from GMFs, fix oq.investigation_time.
:returns: the number of hazard realizations
"""
R = len(dstore['weights'])
if 'gmfs' in oq.inputs and not oq.investigation_time:
attrs = dstore['gmf_data'].attrs
inv_time = attrs['investigation_time']
eff_time = attrs['effective_time']
if inv_time: # is zero in scenarios
oq.investigation_time = inv_time
oq.ses_per_logic_tree_path = eff_time / (oq.investigation_time * R)
return R
[docs]def save_curve_stats(dstore):
"""
Save agg_curves-stats
"""
oq = dstore['oqparam']
units = dstore['exposure'].cost_calculator.get_units(oq.loss_types)
try:
K = len(dstore['agg_keys'])
except KeyError:
K = 0
stats = oq.hazard_stats()
S = len(stats)
weights = dstore['weights'][:]
aggcurves_df = dstore.read_df('aggcurves')
periods = aggcurves_df.return_period.unique()
P = len(periods)
ep_fields = []
if 'loss' in aggcurves_df:
ep_fields = ['loss']
if 'loss_aep' in aggcurves_df:
ep_fields.append('loss_aep')
if 'loss_oep' in aggcurves_df:
ep_fields.append('loss_oep')
EP = len(ep_fields)
for lt in oq.ext_loss_types:
loss_id = scientific.LOSSID[lt]
out = numpy.zeros((K + 1, S, P, EP))
aggdf = aggcurves_df[aggcurves_df.loss_id == loss_id]
for agg_id, df in aggdf.groupby("agg_id"):
for s, stat in enumerate(stats.values()):
for p in range(P):
for e, ep_field in enumerate(ep_fields):
dfp = df[df.return_period == periods[p]]
ws = weights[dfp.rlz_id.to_numpy()]
ws /= ws.sum()
out[agg_id, s, p, e] = stat(dfp[ep_field].to_numpy(),
ws)
stat = 'agg_curves-stats/' + lt
dstore.create_dset(stat, F64, (K + 1, S, P, EP))
dstore.set_shape_descr(stat, agg_id=K+1, stat=list(stats),
return_period=periods, ep_fields=ep_fields)
dstore.set_attrs(stat, units=units)
dstore[stat][:] = out
[docs]def reagg_idxs(num_tags, tagnames):
"""
:param num_tags: dictionary tagname -> number of tags with that tagname
:param tagnames: subset of tagnames of interest
:returns: T = T1 x ... X TN indices with repetitions
Reaggregate indices. Consider for instance a case with 3 tagnames,
taxonomy (4 tags), region (3 tags) and country (2 tags):
>>> num_tags = dict(taxonomy=4, region=3, country=2)
There are T = T1 x T2 x T3 = 4 x 3 x 2 = 24 combinations.
The function will return 24 reaggregated indices with repetions depending
on the selected subset of tagnames.
For instance reaggregating by taxonomy and region would give:
>>> list(reagg_idxs(num_tags, ['taxonomy', 'region'])) # 4x3
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11]
Reaggregating by taxonomy and country would give:
>>> list(reagg_idxs(num_tags, ['taxonomy', 'country'])) # 4x2
[0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7]
Reaggregating by region and country would give:
>>> list(reagg_idxs(num_tags, ['region', 'country'])) # 3x2
[0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
Here is an example of single tag aggregation:
>>> list(reagg_idxs(num_tags, ['taxonomy'])) # 4
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
"""
shape = list(num_tags.values())
T = numpy.prod(shape)
arr = numpy.arange(T).reshape(shape)
ranges = [numpy.arange(n) if t in tagnames else [slice(None)]
for t, n in num_tags.items()]
for i, idx in enumerate(itertools.product(*ranges)):
arr[idx] = i
return arr.flatten()
[docs]def get_loss_builder(dstore, oq, return_periods=None, loss_dt=None,
num_events=None):
"""
:param dstore: datastore for an event based risk calculation
:returns: a LossCurvesMapsBuilder instance or a Mock object for scenarios
"""
if oq.investigation_time is None:
return FakeBuilder()
weights = dstore['weights'][()]
haz_time = oq.investigation_time * oq.ses_per_logic_tree_path * (
len(weights) if oq.collect_rlzs else 1)
if oq.collect_rlzs:
try:
etime = dstore['gmf_data'].attrs['effective_time']
except KeyError:
etime = None
haz_time = (oq.investigation_time * oq.ses_per_logic_tree_path *
len(weights))
if etime and etime != haz_time:
raise ValueError('The effective time stored in gmf_data is %d, '
'which is inconsistent with %d' %
(etime, haz_time))
num_events = numpy.array([len(dstore['events'])])
weights = numpy.ones(1)
else:
haz_time = oq.investigation_time * oq.ses_per_logic_tree_path
if num_events is None:
num_events = numpy.bincount(
dstore['events']['rlz_id'], minlength=len(weights))
max_events = num_events.max()
periods = return_periods or oq.return_periods or scientific.return_periods(
haz_time, max_events) # in case_master [1, 2, 5, 10]
if 'post_loss_amplification' in oq.inputs:
pla_factor = scientific.pla_factor(
dstore.read_df('post_loss_amplification'))
else:
pla_factor = None
return scientific.LossCurvesMapsBuilder(
oq.conditional_loss_poes, numpy.array(periods),
loss_dt or oq.loss_dt(), weights,
haz_time, oq.risk_investigation_time or oq.investigation_time,
pla_factor=pla_factor)
[docs]def get_src_loss_table(dstore, loss_id):
"""
:returns:
(source_ids, array of losses of shape Ns)
"""
K = dstore['risk_by_event'].attrs.get('K', 0)
alt = dstore.read_df('risk_by_event', 'agg_id',
dict(agg_id=K, loss_id=loss_id))
if len(alt) == 0: # no losses for this loss type
return [], ()
ws = dstore['weights'][:]
events = dstore['events'][:]
ruptures = dstore['ruptures'][:]
source_id = dstore['source_info']['source_id']
eids = alt.event_id.to_numpy()
evs = events[eids]
rlz_ids = evs['rlz_id']
srcidx = dict(ruptures[['id', 'source_id']])
srcids = [srcidx[rup_id] for rup_id in evs['rup_id']]
srcs = python3compat.decode(source_id[srcids])
acc = general.AccumDict(accum=0)
for src, rlz_id, loss in zip(srcs, rlz_ids, alt.loss.to_numpy()):
acc[src] += loss * ws[rlz_id]
return zip(*sorted(acc.items()))
[docs]def fix_dtype(dic, dtype, names):
for name in names:
dic[name] = dtype(dic[name])
[docs]def fix_dtypes(dic):
"""
Fix the dtypes of the given columns inside a dictionary (to be
called before conversion to a DataFrame)
"""
fix_dtype(dic, U32, ['agg_id'])
fix_dtype(dic, U8, ['loss_id'])
if 'event_id' in dic:
fix_dtype(dic, U32, ['event_id'])
if 'rlz_id' in dic:
fix_dtype(dic, U16, ['rlz_id'])
if 'return_period' in dic:
fix_dtype(dic, U32, ['return_period'])
floatcolumns = [col for col in dic if col not in {
'agg_id', 'loss_id', 'event_id', 'rlz_id', 'return_period'}]
fix_dtype(dic, F32, floatcolumns)
[docs]def build_aggcurves(items, builder, num_events, aggregate_loss_curves_types):
"""
:param items: a list of pairs ((agg_id, rlz_id, loss_id), losses)
:param builder: a :class:`LossCurvesMapsBuilder` instance
"""
dic = general.AccumDict(accum=[])
for (agg_id, rlz_id, loss_id), data in items:
year = data.pop('year', ())
curve = {
col: builder.build_curve(
# col is 'losses' in the case of consequences
year, 'loss' if col == 'losses' else col,
data[col], aggregate_loss_curves_types,
scientific.LOSSTYPE[loss_id], num_events[rlz_id])
for col in data}
for p, period in enumerate(builder.return_periods):
dic['agg_id'].append(agg_id)
dic['rlz_id'].append(rlz_id)
dic['loss_id'].append(loss_id)
dic['return_period'].append(period)
for col in data:
# NB: 'fatalities' in EventBasedDamageTestCase.test_case_15
for k, c in curve[col].items():
dic[k].append(c[p])
return dic
[docs]def get_loss_id(ext_loss_types):
if 'structural' in ext_loss_types:
return scientific.LOSSID['structural']
return scientific.LOSSID[ext_loss_types[0]]
# launch Starmap building the aggcurves and store them
[docs]def store_aggcurves(oq, agg_ids, rbe_df, builder, loss_cols,
events, num_events, dstore):
aggtypes = oq.aggregate_loss_curves_types
logging.info('Building aggcurves')
units = dstore['exposure'].cost_calculator.get_units(oq.loss_types)
try:
year = events['year']
if len(numpy.unique(year)) == 1: # there is a single year
year = ()
except ValueError: # missing in case of GMFs from CSV
year = ()
items = []
for agg_id in agg_ids:
gb = rbe_df[rbe_df.agg_id == agg_id].groupby(['rlz_id', 'loss_id'])
for (rlz_id, loss_id), df in gb:
data = {col: df[col].to_numpy() for col in loss_cols}
if len(year):
data['year'] = year[df.event_id.to_numpy()]
items.append([(agg_id, rlz_id, loss_id), data])
dic = parallel.Starmap.apply(
build_aggcurves, (items, builder, num_events, aggtypes),
concurrent_tasks=oq.concurrent_tasks,
h5=dstore.hdf5).reduce()
fix_dtypes(dic)
suffix = {'ep': '', 'aep': '_aep', 'oep': '_oep'}
ep_fields = ['loss' + suffix[a] for a in aggtypes.split(', ')]
dstore.create_df('aggcurves', pandas.DataFrame(dic),
limit_states=' '.join(oq.limit_states),
units=units, ep_fields=ep_fields)
# aggcurves are built in parallel, aggrisk sequentially
[docs]def build_store_agg(dstore, oq, rbe_df, num_events):
"""
Build the aggrisk and aggcurves tables from the risk_by_event table
"""
size = dstore.getsize('risk_by_event')
logging.info('Building aggrisk from %s of risk_by_event',
general.humansize(size))
if oq.investigation_time: # event based
tr = oq.time_ratio # (risk_invtime / haz_invtime) * num_ses
if oq.collect_rlzs: # reduce the time ratio by the number of rlzs
tr /= len(dstore['weights'])
rups = len(dstore['ruptures'])
events = dstore['events'][:]
rlz_id = events['rlz_id']
rup_id = events['rup_id']
if len(num_events) > 1:
rbe_df['rlz_id'] = rlz_id[rbe_df.event_id.to_numpy()]
else:
rbe_df['rlz_id'] = 0
acc = general.AccumDict(accum=[])
columns = [col for col in rbe_df.columns if col not in {
'event_id', 'agg_id', 'rlz_id', 'loss_id', 'variance'}]
dmgs = [col for col in columns if col.startswith('dmg_')]
if dmgs:
aggnumber = dstore['agg_values']['number']
agg_ids = rbe_df.agg_id.unique()
K = agg_ids.max()
L = len(oq.loss_types)
T = scientific.LOSSID[oq.total_losses or 'structural']
logging.info("Performing %d aggregations", len(agg_ids))
loss_cols = [col for col in columns if not col.startswith('dmg_')]
if loss_cols:
builder = get_loss_builder(dstore, oq, num_events=num_events)
else:
builder = FakeBuilder()
# double loop to avoid running out of memory
for agg_id in agg_ids:
# build loss_by_event and loss_by_rupture
if agg_id == K and ('loss' in columns or 'losses' in columns) and rups:
df = rbe_df[(rbe_df.agg_id == K) & (rbe_df.loss_id == T)].copy()
if len(df):
df['rup_id'] = rup_id[df.event_id.to_numpy()]
if 'losses' in columns: # for consequences
df['loss'] = df['losses']
lbe_df = df[['event_id', 'loss']].sort_values(
'loss', ascending=False)
gb = df[['rup_id', 'loss']].groupby('rup_id')
rbr_df = gb.sum().sort_values('loss', ascending=False)
dstore.create_df('loss_by_rupture', rbr_df.reset_index())
dstore.create_df('loss_by_event', lbe_df)
# build aggrisk
gb = rbe_df[rbe_df.agg_id == agg_id].groupby(['rlz_id', 'loss_id'])
for (rlz_id, loss_id), df in gb:
ne = num_events[rlz_id]
acc['agg_id'].append(agg_id)
acc['rlz_id'].append(rlz_id)
acc['loss_id'].append(loss_id)
if dmgs:
# infer the number of buildings in nodamage state
ndamaged = sum(df[col].sum() for col in dmgs)
dmg0 = aggnumber[agg_id] - ndamaged / (ne * L)
assert dmg0 >= 0, dmg0
acc['dmg_0'].append(dmg0)
for col in columns:
losses = df[col].sort_values().to_numpy()
sorted_losses, _, eperiods = scientific.fix_losses(
losses, ne, builder.eff_time)
agg = sorted_losses.sum()
acc[col].append(
agg * tr if oq.investigation_time else agg/ne)
if builder.pla_factor:
agg = sorted_losses @ builder.pla_factor(eperiods)
acc['pla_' + col].append(
agg * tr if oq.investigation_time else agg/ne)
fix_dtypes(acc)
aggrisk = pandas.DataFrame(acc)
dstore.create_df('aggrisk', aggrisk,
limit_states=' '.join(oq.limit_states))
if oq.investigation_time and loss_cols:
store_aggcurves(oq, agg_ids, rbe_df, builder, loss_cols, events,
num_events, dstore)
return aggrisk
[docs]def build_reinsurance(dstore, oq, num_events):
"""
Build and store the tables `reinsurance-avg_policy` and
`reinsurance-avg_portfolio`;
for event_based, also build the `reinsurance-aggcurves` table.
"""
size = dstore.getsize('reinsurance-risk_by_event')
logging.info('Building reinsurance-aggcurves from %s of '
'reinsurance-risk_by_event', general.humansize(size))
if oq.investigation_time:
tr = oq.time_ratio # risk_invtime / (haz_invtime * num_ses)
if oq.collect_rlzs: # reduce the time ratio by the number of rlzs
tr /= len(dstore['weights'])
events = dstore['events'][:]
rlz_id = events['rlz_id']
try:
year = events['year']
if len(numpy.unique(year)) == 1: # there is a single year
year = ()
except ValueError: # missing in case of GMFs from CSV
year = ()
rbe_df = dstore.read_df('reinsurance-risk_by_event', 'event_id')
columns = rbe_df.columns
if len(num_events) > 1:
rbe_df['rlz_id'] = rlz_id[rbe_df.index.to_numpy()]
else:
rbe_df['rlz_id'] = 0
builder = get_loss_builder(dstore, oq, num_events=num_events)
avg = general.AccumDict(accum=[])
dic = general.AccumDict(accum=[])
for rlzid, df in rbe_df.groupby('rlz_id'):
ne = num_events[rlzid]
avg['rlz_id'].append(rlzid)
for col in columns:
agg = df[col].sum()
avg[col].append(agg * tr if oq.investigation_time else agg / ne)
if oq.investigation_time:
if len(year):
years = year[df.index.to_numpy()]
else:
years = ()
curve = {col: builder.build_curve(
years, col, df[col].to_numpy(),
oq.aggregate_loss_curves_types,
'reinsurance', ne)
for col in columns}
for p, period in enumerate(builder.return_periods):
dic['rlz_id'].append(rlzid)
dic['return_period'].append(period)
for col in curve:
for k, c in curve[col].items():
dic[k].append(c[p])
cc = dstore['exposure'].cost_calculator
dstore.create_df('reinsurance-avg_portfolio', pandas.DataFrame(avg),
units=cc.get_units(oq.loss_types))
# aggrisk by policy
avg = general.AccumDict(accum=[])
rbp_df = dstore.read_df('reinsurance_by_policy')
if len(num_events) > 1:
rbp_df['rlz_id'] = rlz_id[rbp_df.event_id.to_numpy()]
else:
rbp_df['rlz_id'] = 0
columns = [col for col in rbp_df.columns if col not in
{'event_id', 'policy_id', 'rlz_id'}]
for (rlz_id, policy_id), df in rbp_df.groupby(['rlz_id', 'policy_id']):
ne = num_events[rlz_id]
avg['rlz_id'].append(rlz_id)
avg['policy_id'].append(policy_id)
for col in columns:
agg = df[col].sum()
avg[col].append(agg * tr if oq.investigation_time else agg / ne)
dstore.create_df('reinsurance-avg_policy', pandas.DataFrame(avg),
units=cc.get_units(oq.loss_types))
if oq.investigation_time is None:
return
dic['return_period'] = F32(dic['return_period'])
dic['rlz_id'] = U16(dic['rlz_id'])
dstore.create_df('reinsurance-aggcurves', pandas.DataFrame(dic),
units=cc.get_units(oq.loss_types))
[docs]@base.calculators.add('post_risk')
class PostRiskCalculator(base.RiskCalculator):
"""
Compute losses and loss curves starting from an event loss table.
"""
[docs] def pre_execute(self):
oq = self.oqparam
ds = self.datastore
self.reaggreate = False
if oq.hazard_calculation_id and not ds.parent:
ds.parent = datastore.read(oq.hazard_calculation_id)
if not hasattr(self, 'assetcol'):
self.assetcol = ds.parent['assetcol']
base.save_agg_values(
ds, self.assetcol, oq.loss_types,
oq.aggregate_by, oq.max_aggregations)
aggby = ds.parent['oqparam'].aggregate_by
self.reaggreate = (aggby and oq.aggregate_by and
set(oq.aggregate_by[0]) < set(aggby[0]))
if self.reaggreate:
[names] = aggby
self.num_tags = dict(
zip(names, self.assetcol.tagcol.agg_shape(names)))
self.L = len(oq.loss_types)
if self.R > 1:
self.num_events = numpy.bincount(
ds['events']['rlz_id'], minlength=self.R) # events by rlz
else:
self.num_events = numpy.array([len(ds['events'])])
[docs] def execute(self):
oq = self.oqparam
R = fix_investigation_time(oq, self.datastore)
if oq.investigation_time:
eff_time = oq.investigation_time * oq.ses_per_logic_tree_path * R
if 'reinsurance' in oq.inputs:
logging.warning('Reinsurance calculations are still experimental')
self.policy_df = self.datastore.read_df('policy')
self.treaty_df = self.datastore.read_df('treaty_df')
# there must be a single loss type (possibly a total type)
ideduc = self.datastore['assetcol/array']['ideductible'].any()
if (oq.total_losses or len(oq.loss_types) == 1) and ideduc:
# claim already computed and present in risk_by_event
lt = 'claim'
else:
# claim to be computed from the policies
[lt] = oq.inputs['reinsurance']
loss_id = scientific.LOSSID[lt]
parent = self.datastore.parent
if parent and 'risk_by_event' in parent:
dstore = parent
else:
dstore = self.datastore
ct = oq.concurrent_tasks or 1
# now aggregate risk_by_event by policy
allargs = [(dstore, pdf, self.treaty_df, loss_id)
for pdf in numpy.array_split(self.policy_df, ct)]
self.datastore.swmr_on()
smap = parallel.Starmap(reinsurance.reins_by_policy, allargs,
h5=self.datastore.hdf5)
rbp = pandas.concat(list(smap))
if len(rbp) == 0:
raise ValueError('No data in risk_by_event for %r' % lt)
rbe = reinsurance.by_event(rbp, self.treaty_df, self._monitor)
self.datastore.create_df('reinsurance_by_policy', rbp)
self.datastore.create_df('reinsurance-risk_by_event', rbe)
if oq.investigation_time and oq.return_periods != [0]:
# setting return_periods = 0 disable loss curves
if eff_time < 2:
logging.warning(
'eff_time=%s is too small to compute loss curves',
eff_time)
return
logging.info('Aggregating by %s', oq.aggregate_by)
if 'source_info' in self.datastore and 'risk' in oq.calculation_mode:
logging.info('Building the src_loss_table')
with self.monitor('src_loss_table', measuremem=True):
for loss_type in oq.loss_types:
source_ids, losses = get_src_loss_table(
self.datastore, scientific.LOSSID[loss_type])
self.datastore['src_loss_table/' + loss_type] = losses
self.datastore.set_shape_descr(
'src_loss_table/' + loss_type, source=source_ids)
K = len(self.datastore['agg_keys']) if oq.aggregate_by else 0
rbe_df = self.datastore.read_df('risk_by_event')
if len(rbe_df) == 0:
logging.warning('The risk_by_event table is empty, perhaps the '
'hazard is too small?')
return 0
if self.reaggreate:
idxs = numpy.concatenate([
reagg_idxs(self.num_tags, oq.aggregate_by[0]),
numpy.array([K], int)])
rbe_df['agg_id'] = idxs[rbe_df['agg_id'].to_numpy()]
rbe_df = rbe_df.groupby(
['event_id', 'loss_id', 'agg_id']).sum().reset_index()
self.aggrisk = build_store_agg(
self.datastore, oq, rbe_df, self.num_events)
if 'reinsurance-risk_by_event' in self.datastore:
build_reinsurance(self.datastore, oq, self.num_events)
return 1
[docs] def post_execute(self, ok):
"""
Sanity checks and save agg_curves-stats
"""
if not ok: # the hazard is to small
return
oq = self.oqparam
if 'risk' in oq.calculation_mode:
self.datastore['oqparam'] = oq
for ln in self.oqparam.loss_types:
li = scientific.LOSSID[ln]
dloss = views.view('delta_loss:%d' % li, self.datastore)
if dloss['delta'].mean() > .1: # more than 10% variation
logging.warning(
'A big variation in the %s losses is expected: try'
'\n$ oq show delta_loss:%d %d', ln, li,
self.datastore.calc_id)
logging.info('Sanity check on avg_losses and aggrisk')
if 'avg_losses-rlzs' in set(self.datastore):
url = ('https://docs.openquake.org/oq-engine/advanced/'
'addition-is-non-associative.html')
K = len(self.datastore['agg_keys']) if oq.aggregate_by else 0
aggrisk = self.aggrisk[self.aggrisk.agg_id == K]
avg_losses = {
lt: self.datastore['avg_losses-rlzs/' + lt][:].sum(axis=0)
for lt in oq.loss_types}
# shape (R, L)
for _, row in aggrisk.iterrows():
ri, li = int(row.rlz_id), int(row.loss_id)
lt = scientific.LOSSTYPE[li]
if lt not in avg_losses:
continue
# check on the sum of the average losses
avg = avg_losses[lt][ri]
agg = row.loss
if not numpy.allclose(avg, agg, rtol=.1):
# a serious discrepancy is an error
raise ValueError("agg != sum(avg) [%s]: %s %s" %
(lt, agg, avg))
if not numpy.allclose(avg, agg, rtol=.001):
# a small discrepancy is expected
logging.warning(
'Due to rounding errors inherent in floating-point '
'arithmetic, agg_losses != sum(avg_losses) [%s]: '
'%s != %s\nsee %s', lt, agg, avg, url)
# save agg_curves-stats
if self.R > 1 and 'aggcurves' in self.datastore:
save_curve_stats(self.datastore)
[docs]def post_aggregate(calc_id: int, aggregate_by):
"""
Re-run the postprocessing after an event based risk calculation
"""
parent = datastore.read(calc_id)
oqp = parent['oqparam']
aggby = aggregate_by.split(',')
parent_tags = asset.tagset(oqp.aggregate_by)
if aggby and not parent_tags:
raise ValueError('Cannot reaggregate from a parent calculation '
'without aggregate_by')
for tag in aggby:
if tag not in parent_tags:
raise ValueError('%r not in %s' % (tag, oqp.aggregate_by[0]))
dic = dict(
calculation_mode='reaggregate',
description=oqp.description + '[aggregate_by=%s]' % aggregate_by,
user_name=getpass.getuser(), is_running=1, status='executing',
pid=os.getpid(), hazard_calculation_id=calc_id)
log = logs.init('job', dic, logging.INFO)
if os.environ.get('OQ_DISTRIBUTE') not in ('no', 'processpool'):
os.environ['OQ_DISTRIBUTE'] = 'processpool'
with log:
oqp.hazard_calculation_id = parent.calc_id
parallel.Starmap.init()
prc = PostRiskCalculator(oqp, log.calc_id)
prc.run(aggregate_by=[aggby])
expose_outputs(prc.datastore)