Source code for openquake.calculators.event_based_damage

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

import os.path
import logging
import numpy
import pandas

from openquake.baselib import hdf5, general
from openquake.hazardlib.stats import set_rlzs_stats
from openquake.risklib import scientific, connectivity
from openquake.commonlib import datastore, calc
from openquake.calculators import base
from openquake.calculators.event_based_risk import EventBasedRiskCalculator
from openquake.calculators.post_risk import (
    get_loss_builder, fix_dtypes, PostRiskCalculator)
from openquake.calculators.export import DISPLAY_NAME

U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32


[docs]def zero_dmgcsq(A, R, L, crmodel): """ :returns: an array of zeros of shape (A, R, L, Dc) """ dmg_csq = crmodel.get_dmg_csq() Dc = len(dmg_csq) + 1 # damages + consequences P = len(crmodel.perils) return numpy.zeros((P, A, R, L, Dc), F32)
[docs]def damage_from_gmfs(gmfslices, oqparam, dstore, monitor): """ :param gmfslices: an array (S, 3) with S slices (start, stop, weight) :param oqparam: OqParam instance :param dstore: DataStore instance from which to read the GMFs :param monitor: a Monitor instance :returns: a dictionary of arrays, the output of event_based_damage """ if dstore.parent: dstore.parent.open('r') dfs = [] with dstore, monitor('reading data', measuremem=True): for gmfslice in gmfslices: slc = slice(gmfslice[0], gmfslice[1]) dfs.append(dstore.read_df('gmf_data', slc=slc)) df = pandas.concat(dfs) return event_based_damage(df, oqparam, dstore, monitor)
[docs]def event_based_damage(df, oq, dstore, monitor): """ :param df: a DataFrame of GMFs with fields sid, eid, gmv_X, ... :param oq: parameters coming from the job.ini :param dstore: a DataStore instance :param monitor: a Monitor instance :returns: (damages (eid, kid) -> LDc plus damages (A, Dc)) """ mon = monitor('computing dds', measuremem=False) with monitor('reading gmf_data'): if oq.parentdir: dstore = datastore.read(oq.hdf5path, parentdir=oq.parentdir) else: dstore.open('r') assetcol = dstore['assetcol'] crmodel = monitor.read('crmodel') aggids = monitor.read('aggids') dmgcsq = zero_dmgcsq(len(assetcol), oq.R, oq.L, crmodel) P, _A, R, L, Dc = dmgcsq.shape D = len(crmodel.damage_states) rlzs = dstore['events']['rlz_id'] dddict = general.AccumDict(accum=numpy.zeros((L, Dc), F32)) # eid, kid for sid, asset_df in assetcol.to_dframe().groupby('site_id'): # working one site at the time gmf_df = df[df.sid == sid] if len(gmf_df) == 0: continue eids = gmf_df.eid.to_numpy() E = len(eids) if not oq.float_dmg_dist: rng = scientific.MultiEventRNG( oq.master_seed, numpy.unique(eids)) else: rng = None for taxo, adf in asset_df.groupby('taxonomy'): aids = adf.index.to_numpy() A = len(aids) with mon: rc = scientific.RiskComputer(crmodel, taxo) dd5 = rc.get_dd5(adf, gmf_df, rng, Dc-D, crmodel) # (A, E, L, Dc) if R == 1: # possibly because of collect_rlzs dmgcsq[:, aids, 0] += dd5.sum(axis=2) else: for e, rlz in enumerate(rlzs[eids]): dmgcsq[:, aids, rlz] += dd5[:, :, e] if P > 1: dd4 = numpy.empty(dd5.shape[1:]) for li in range(L): for a in range(A): for e in range(E): dd4[a, e, li, :D] = scientific.compose_dds(dd5[:, a, e, li, :D]) dd4[a, e, li, D:] = dd5[:, a, e, li, D:].max(axis=0) else: dd4 = dd5[0] tot = dd4.sum(axis=0) # (E, L, Dc) for e, eid in enumerate(eids): dddict[eid, oq.K] += tot[e] if oq.K: for kids in aggids: for a, aid in enumerate(aids): dddict[eid, kids[aid]] += dd4[a, e] csqidx = {dc: i + 1 for i, dc in enumerate(crmodel.get_dmg_csq())} return _dframe(dddict, csqidx, oq.loss_types), dmgcsq
def _dframe(dddic, csqidx, loss_types): # convert {(eid, kid): dd} into a DataFrame (agg_id, event_id, loss_id) dic = general.AccumDict(accum=[]) for (eid, kid), dd in sorted(dddic.items()): for li, lt in enumerate(loss_types): dic['agg_id'].append(kid) dic['event_id'].append(eid) dic['loss_id'].append(scientific.LOSSID[lt]) for cname, ci in csqidx.items(): dic[cname].append(dd[li, ci]) fix_dtypes(dic) return pandas.DataFrame(dic)
[docs]@base.calculators.add('event_based_damage', 'scenario_damage') class DamageCalculator(EventBasedRiskCalculator): """ Damage calculator """ core_task = event_based_damage is_stochastic = True precalc = 'event_based' accept_precalc = ['scenario', 'event_based', 'event_based_risk', 'event_based_damage']
[docs] def create_avg_losses(self): """ Do nothing: there are no losses in the DamageCalculator """
[docs] def execute(self): """ Compute risk from GMFs or ruptures depending on what is stored """ oq = self.oqparam number = self.assetcol['value-number'] num_floats = (U32(number) != number).sum() if oq.discrete_damage_distribution and num_floats: raise ValueError( 'The exposure contains %d non-integer asset numbers: ' 'you cannot use dicrete_damage_distribution=true' % num_floats) oq.R = self.R # 1 if collect_rlzs oq.float_dmg_dist = not oq.discrete_damage_distribution if oq.hazard_calculation_id: oq.parentdir = os.path.dirname(self.datastore.ppath) if oq.investigation_time: # event based self.builder = get_loss_builder(self.datastore, oq) # check self.dmgcsq = zero_dmgcsq(len(self.assetcol), self.R, oq.L, self.crmodel) if oq.K: aggids, _ = self.assetcol.build_aggids( oq.aggregate_by, oq.max_aggregations) else: aggids = 0 smap = calc.starmap_from_gmfs( damage_from_gmfs, oq, self.datastore, self._monitor) smap.monitor.save('aggids', aggids) smap.monitor.save('assets', self.assetcol.to_dframe('id')) smap.monitor.save('crmodel', self.crmodel) return smap.reduce(self.combine)
[docs] def combine(self, acc, res): """ :param acc: unused :param res: DataFrame with fields (event_id, agg_id, loss_id, dmg1 ...) plus array with damages and consequences of shape (A, Dc) Combine the results and grows risk_by_event with fields (event_id, agg_id, loss_id) and (dmg_0, dmg_1, dmg_2, ...) """ df, dmgcsq = res self.dmgcsq += dmgcsq with self.monitor('saving risk_by_event', measuremem=True): for name in df.columns: dset = self.datastore['risk_by_event/' + name] hdf5.extend(dset, df[name].to_numpy()) return 1
[docs] def post_execute(self, dummy): """ Store damages-rlzs/stats, aggrisk and aggcurves """ oq = self.oqparam # no damage check, perhaps the sites where disjoint from gmf_data if self.dmgcsq[:, :, :, :, 1:].sum() == 0: haz_sids = self.datastore['gmf_data/sid'][:] count = numpy.isin(haz_sids, self.sitecol.sids).sum() if count == 0: raise ValueError('The sites in gmf_data are disjoint from the ' 'site collection!?') else: logging.warning( 'There is no damage, perhaps the hazard is too small?') return prc = PostRiskCalculator(oq, self.datastore.calc_id) prc.assetcol = self.assetcol if hasattr(self, 'exported'): prc.exported = self.exported with prc.datastore: prc.run(exports='') P, _A, _R, L, _Dc = self.dmgcsq.shape D = len(self.crmodel.damage_states) # fix no_damage distribution for events with zero damage number = self.assetcol['value-number'] for p in range(P): for r in range(self.R): self.dmgcsq[p, :, r] /= prc.num_events[r] ndamaged = self.dmgcsq[p, :, r, :, 1:D].sum(axis=2) # shape (A, L) for li in range(L): # set no_damage self.dmgcsq[p, :, r, li, 0] = number - ndamaged[:, li] assert (self.dmgcsq >= 0).all() # sanity check self.datastore['damages-rlzs'] = self.crmodel.to_multi_damage(self.dmgcsq) set_rlzs_stats(self.datastore, 'damages-rlzs', asset_id=self.assetcol['id']) if oq.infrastructure_connectivity_analysis: logging.info('Running connectivity analysis') results = connectivity.analysis(self.datastore) self._store_connectivity_analysis_results(results)
def _store_connectivity_analysis_results(self, conn_results): avg_dict = {} if 'avg_connectivity_loss_eff' in conn_results: avg_dict['efl'] = [conn_results['avg_connectivity_loss_eff']] if 'avg_connectivity_loss_pcl' in conn_results: avg_dict['pcl'] = [conn_results['avg_connectivity_loss_pcl']] if 'avg_connectivity_loss_wcl' in conn_results: avg_dict['wcl'] = [conn_results['avg_connectivity_loss_wcl']] if 'avg_connectivity_loss_ccl' in conn_results: avg_dict['ccl'] = [conn_results['avg_connectivity_loss_ccl']] if avg_dict: self.datastore.create_df( 'infra-avg_loss', pandas.DataFrame(data=avg_dict), display_name=DISPLAY_NAME['infra-avg_loss']) if 'event_connectivity_loss_eff' in conn_results: self.datastore.create_df( 'infra-event_efl', conn_results['event_connectivity_loss_eff'], display_name=DISPLAY_NAME['infra-event_efl']) if 'event_connectivity_loss_pcl' in conn_results: self.datastore.create_df( 'infra-event_pcl', conn_results['event_connectivity_loss_pcl'], display_name=DISPLAY_NAME['infra-event_pcl']) if 'event_connectivity_loss_wcl' in conn_results: self.datastore.create_df( 'infra-event_wcl', conn_results['event_connectivity_loss_wcl'], display_name=DISPLAY_NAME['infra-event_wcl']) if 'event_connectivity_loss_ccl' in conn_results: self.datastore.create_df( 'infra-event_ccl', conn_results['event_connectivity_loss_ccl'], display_name=DISPLAY_NAME['infra-event_ccl']) if 'taz_cl' in conn_results: self.datastore.create_df( 'infra-taz_cl', conn_results['taz_cl'], display_name=DISPLAY_NAME['infra-taz_cl']) if 'dem_cl' in conn_results: self.datastore.create_df( 'infra-dem_cl', conn_results['dem_cl'], display_name=DISPLAY_NAME['infra-dem_cl']) if 'node_el' in conn_results: self.datastore.create_df( 'infra-node_el', conn_results['node_el'], display_name=DISPLAY_NAME['infra-node_el'])