Source code for openquake.hmtk.seismicity.occurrence.b_maximum_likelihood

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

"""
"""

import numpy as np
from openquake.hmtk.seismicity.occurrence.utils import (
    input_checks,
    recurrence_table,
)
from openquake.hmtk.seismicity.occurrence.base import (
    SeismicityOccurrence,
    OCCURRENCE_METHODS,
)
from openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood import (
    AkiMaxLikelihood,
)


[docs]@OCCURRENCE_METHODS.add( "calculate", **{ "completeness": True, "reference_magnitude": 0.0, "magnitude_interval": 0.1, "Average Type": ["Weighted", "Harmonic"], }, ) class BMaxLikelihood(SeismicityOccurrence): """Implements maximum likelihood calculations taking into account time variation in completeness" """
[docs] def calculate(self, catalogue, config, completeness=None): """Calculates recurrence parameters a_value and b_value, and their respective uncertainties :param catalogue: Earthquake Catalogue An instance of :class:`openquake.hmtk.seismicity.catalogue` :param dict config: A configuration dictionary; the only parameter that can be defined in this case if the type of average to be applied in the calculation :param list or numpy.ndarray completeness: Completeness table """ # Input checks cmag, ctime, ref_mag, dmag, config = input_checks( catalogue, config, completeness ) # Check the configuration if config["Average Type"] not in ["Weighted", "Harmonic"]: raise ValueError("Average type not recognised in bMaxLiklihood!") return self._b_ml(catalogue, config, cmag, ctime, ref_mag, dmag)
def _b_ml(self, catalogue, config, cmag, ctime, ref_mag, dmag): end_year = float(catalogue.end_year) catalogue = catalogue.data ival = 0 mag_eq_tolerance = 1e-5 aki_ml = AkiMaxLikelihood() while ival < np.shape(ctime)[0]: id0 = np.abs(ctime - ctime[ival]) < mag_eq_tolerance m_c = np.min(cmag[id0]) print("--- ctime", ctime[ival], " m_c", m_c) # Find events later than cut-off year, and with magnitude # greater than or equal to the corresponding completeness # magnitude. m_c - mag_eq_tolerance is required to correct # floating point differences. id1 = np.logical_and( catalogue["year"] >= ctime[ival], catalogue["magnitude"] >= (m_c - mag_eq_tolerance), ) # Get a- and b- value for the selected events temp_rec_table = recurrence_table( catalogue["magnitude"][id1], dmag, catalogue["year"][id1], end_year - ctime[ival] + 1, ) bval, sigma_b = aki_ml._aki_ml( temp_rec_table[:, 0], temp_rec_table[:, 1], dmag, m_c ) if ival == 0: gr_pars = np.array([np.hstack([bval, sigma_b])]) neq = np.sum(id1) # Number of events else: gr_pars = np.vstack([gr_pars, np.hstack([bval, sigma_b])]) neq = np.hstack([neq, np.sum(id1)]) ival = ival + np.sum(id0) # Get average GR parameters bval, sigma_b = self._average_parameters( gr_pars, neq, config["Average Type"] ) aval = self._calculate_a_value( bval, float(np.sum(neq)), cmag, ctime, catalogue["magnitude"], end_year, dmag, ) sigma_a = self._calculate_a_value( bval + sigma_b, float(np.sum(neq)), cmag, ctime, catalogue["magnitude"], end_year, dmag, ) if not config["reference_magnitude"]: return bval, sigma_b, aval, sigma_a - aval else: rate = 10.0 ** (aval - bval * config["reference_magnitude"]) sigma_rate = ( 10.0 ** (sigma_a - bval * config["reference_magnitude"]) - rate ) return bval, sigma_b, rate, sigma_rate def _average_parameters(self, gr_params, neq, average_type="Weighted"): """ Calculates the average of a set of Gutenberg-Richter parameters depending on the average type :param numpy.ndarray gr_params: Gutenberg-Richter parameters [b, sigma_b, a, sigma_a] :param numpy.ndarray neq: """ if np.shape(gr_params)[0] != neq.size: raise ValueError( "Number of weights does not correspond" " to number of parameters" ) if "Harmonic" in average_type: average_parameters = self._harmonic_mean(gr_params, neq) else: average_parameters = self._weighted_mean(gr_params, neq) bval = average_parameters[0] sigma_b = average_parameters[1] return bval, sigma_b def _calculate_a_value( self, bvalue, nvalue, cmag, cyear, magnitude, end_year, dmag ): """ Calculates the a-value using the method of Weichert (1980) and McGuire (2004) """ mmin = cmag[0] mmax = np.max(magnitude) if mmax > np.max(cmag): cmag = np.hstack([cmag, mmax + dmag]) target_mag = (cmag[:-1] + cmag[1:]) / 2.0 nyear = end_year - cyear + 1.0 beta = bvalue * np.log(10.0) rate_mmin = ( nvalue * np.sum(np.exp(-beta * target_mag)) / np.sum(nyear * np.exp(-beta * target_mag)) ) return np.log10(rate_mmin) + bvalue * mmin def _weighted_mean(self, parameters, neq): """Simple weighted mean""" weight = neq.astype(float) / np.sum(neq) if np.shape(parameters)[0] != weight.size: raise ValueError("Parameter vector not same shape as weights") else: average_value = np.zeros(np.shape(parameters)[1], dtype=float) for iloc in range(0, np.shape(parameters)[1]): average_value[iloc] = np.sum(parameters[:, iloc] * weight) return average_value def _harmonic_mean(self, parameters, neq): """Harmonic mean""" weight = neq.astype(float) / np.sum(neq) if np.shape(parameters)[0] != weight.size: raise ValueError("Parameter vector not same shape as weights") average_value = np.zeros(np.shape(parameters)[1], dtype=float) for iloc in range(0, np.shape(parameters)[1]): average_value[iloc] = 1.0 / np.sum( (weight * (1.0 / parameters[:, iloc])) ) return average_value