# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani, D. Monelli
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is free software: you can
# redistribute it and/or modify it under the terms of the GNU Affero General
# Public License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided
# herein is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the hope that
# it will be useful to the scientific, engineering, disaster risk and software
# design communities.
#
# The software is NOT distributed as part of GEM's OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software developers,
# as GEM's OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be directed to
# the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# The GEM Foundation, and the authors of the software, assume no liability for
# use of the software.
"""
Module
:mod:`openquake.hmtk.seismicity.max_magnitude.kijko_nonparametric_gaussian`
implements the Non-Parametric Gaussian estimator of maximum magnitude
proposed by Kijko (2004)
"""
import numpy as np
from scipy.stats.mstats import mquantiles
from openquake.hmtk.seismicity.max_magnitude.base import (
BaseMaximumMagnitude,
MAX_MAGNITUDE_METHODS,
)
[docs]def check_config(config):
"""Check config file inputs and overwrite bad values with the defaults"""
essential_keys = ["number_earthquakes"]
for key in essential_keys:
if key not in config:
raise ValueError(
"For Kijko Nonparametric Gaussian the key %s "
"needs to be set in the configuation" % key
)
if config.get("tolerance", 0.0) <= 0.0:
config["tolerance"] = 0.05
if config.get("maximum_iterations", 0) < 1:
config["maximum_iterations"] = 100
if config.get("number_samples", 0) < 2:
config["number_samples"] = 51
return config
def _get_exponential_spaced_values(mmin, mmax, number_samples):
"""
Function to return a set of exponentially spaced values between mmin and
mmax
:param float mmin:
Minimum value
:param float mmax:
Maximum value
:param float number_samples:
Number of exponentially spaced samples
:return np.ndarray:
Set of 'number_samples' exponentially spaced values
"""
lhs = np.exp(mmin) + np.arange(0.0, number_samples - 1.0, 1.0) * (
(np.exp(mmax) - np.exp(mmin)) / (number_samples - 1.0)
)
magval = np.hstack([lhs, np.exp(mmax)])
return np.log(magval)
[docs]@MAX_MAGNITUDE_METHODS.add(
"get_mmax",
number_earthquakes=float,
number_samples=51,
maximum_iterations=100,
tolerance=0.05,
)
class KijkoNonParametricGaussian(BaseMaximumMagnitude):
"""
Class to implement non-parametric Gaussian methodology of Kijko (2004)
"""
[docs] def get_mmax(self, catalogue, config):
"""
Calculates maximum magnitude
:param catalogue:
Instance of :class: openquake.hmtk.seismicity.catalogue.Catalogue
:param dict config:
Configuration parameters - including:
* 'number_earthquakes': Number of largest magnitudes to consider
* 'number_samples' [optional]: Number of samples for integral {default=51}
* 'maximum_iterations' [optional]: Maximum number of iterations {default=100}
* 'tolerance' [optional]: Magnitude difference threshold for iterstor stability {default=0.05}
:returns:
Maximum magnitude and its uncertainty
"""
config = check_config(config)
# Unlike the exponential distributions, if the input mmax is
# greater than the observed mmax the integral expands rapidly.
# Therefore, only observed mmax is considered
max_loc = np.argmax(catalogue.data["magnitude"])
obsmax = catalogue.data["magnitude"][max_loc]
if (
not (isinstance(catalogue.data["sigmaMagnitude"], np.ndarray))
or (len(catalogue.data["sigmaMagnitude"]) == 0)
or np.all(np.isnan(catalogue.data["sigmaMagnitude"]))
):
obsmaxsig = 0.0
else:
obsmaxsig = catalogue.data["sigmaMagnitude"][max_loc]
# Find number_eqs largest events
n_evts = np.shape(catalogue.data["magnitude"])[0]
if n_evts <= config["number_earthquakes"]:
# Catalogue smaller than number of required events
mag = np.copy(catalogue.data["magnitude"])
neq = float(np.shape(mag)[0])
else:
# Select number_eqs largest events
mag = np.sort(catalogue.data["magnitude"], kind="quicksort")
mag = mag[-config["number_earthquakes"] :]
neq = float(config["number_earthquakes"])
mmin = np.min(mag)
# Get smoothing factor
hfact = self.h_smooth(mag)
mmax = np.copy(obsmax)
d_t = mmax.item() - 0.0
iterator = 0
while d_t > config["tolerance"]:
# Generate exponentially spaced samples
magval = _get_exponential_spaced_values(
mmin, mmax.item(), config["number_samples"]
)
# Evaluate integral function using Simpson's method
delta = self._kijko_npg_intfunc_simps(
magval, mag, mmax.item(), hfact, neq
)
tmmax = obsmax + delta
d_t = np.abs(tmmax - mmax.item())
mmax = np.copy(tmmax)
iterator += 1
if iterator > config["maximum_iterations"]:
print(
"Kijko-Non-Parametric Gaussian estimator reached"
"maximum # of iterations"
)
d_t = -np.inf
return mmax.item(), np.sqrt(
obsmaxsig**2.0 + (mmax.item() - obsmax) ** 2.0
)
[docs] def h_smooth(self, mag):
"""
Function to calculate smoothing coefficient (h) for Gaussian
Kernel estimation - based on Silverman (1986) formula
:param numpy.ndarray mag:
Magnitude vector
:returns:
Smoothing coefficient (h) (float)
"""
neq = float(len(mag))
# Calculate inter-quartile range
qtiles = mquantiles(mag, prob=[0.25, 0.75])
iqr = qtiles[1] - qtiles[0]
hfact = 0.9 * np.min([np.std(mag), iqr / 1.34]) * (neq ** (-1.0 / 5.0))
# Round h to 2 dp
hfact = np.round(100.0 * hfact) / 100.0
return hfact
def _gauss_cdf_hastings(self, xval, barx=0.0, sigx=1.0):
"""Function to implement Hasting's approximation of the normalised
cumulative normal function - this is taken from Kijko's own code
so I don't really know why this is here!!!!!
:param np.ndarray xval:
x variate
:param float barx:
Mean of the distribution
:param float sigx:
Standard Deviation
:return float yval:
Gaussian Cumulative Distribution
"""
x_norm = (xval - barx) / sigx
# Fixed distribution co-efficients
a_1 = 0.196854
a_2 = -0.115194
a_3 = 0.000344
a_4 = 0.019527
x_a = np.abs(x_norm)
yval = 1.0 - 0.5 * (
1.0
+ a_1 * x_a
+ (a_2 * (x_a**2.0))
+ (a_3 * (x_a**3.0))
+ (a_4 * (x_a**4.0))
) ** (-4.0)
# Finally to normalise
yval[x_norm < 0.0] = 1.0 - yval[x_norm < 0.0]
# To deal with precision errors for tail ends
yval[x_norm < -5.0] = 0.0
yval[x_norm > 5.0] = 1.0
return yval
def _kijko_npg_intfunc_simps(self, mval, mag, mmax, hfact, neq):
"""Integral function for non-parametric Gaussuan assuming that
Simpson's rule has been invoked for exponentially spaced samples
:param numpy.ndarray mval:
Target Magnitudes
:param numpy.ndarray mag:
Observed Magnitude values
:param float mmax:
Maximum magnitude for integral
:param float hfact:
Smoothing coefficient (output of h_smooth)
:param float neq:
Number of earthquakes (effectively the length of mag)
:return float intfunc:
Integral of non-Parametric Gaussian function
"""
nmval = len(mval)
# Mmin and Mmax must be arrays to allow for indexing in
# _gauss_cdf_hastings
mmin = np.min(mag)
p_min = self._gauss_cdf_hastings((mmin - mag) / hfact)
p_max = self._gauss_cdf_hastings((mmax - mag) / hfact)
cdf_func = np.zeros(nmval)
for ival, target_mag in enumerate(mval):
# Calculate normalised magnitudes
p_mag = self._gauss_cdf_hastings((target_mag - mag) / hfact)
cdf_func[ival] = (
(np.sum(p_mag) - np.sum(p_min))
/ (np.sum(p_max) - np.sum(p_min))
) ** neq
# Now to perform integration via mid-point rule
intfunc = 0.5 * cdf_func[0] * (mval[1] - mval[0])
for iloc in range(1, nmval - 1):
intfunc = intfunc + (
0.5 * cdf_func[iloc] * (mval[iloc + 1] - mval[iloc - 1])
)
intfunc = intfunc + (0.5 * cdf_func[-1] * (mval[-1] - mval[-2]))
return intfunc