Source code for openquake.hmtk.plotting.seismicity.occurrence.recurrence_plot

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

"""
Simple plots for the recurrence model
"""

import numpy as np
import matplotlib.pyplot as plt
from openquake.hmtk.plotting.seismicity.catalogue_plots import _save_image
from openquake.hmtk.seismicity.occurrence.utils import get_completeness_counts
from openquake.hazardlib.mfd.truncated_gr import TruncatedGRMFD
from openquake.hazardlib.mfd.evenly_discretized import EvenlyDiscretizedMFD
from openquake.hazardlib.mfd.youngs_coppersmith_1985 import (
    YoungsCoppersmith1985MFD,
)


def _get_recurrence_model(input_model):
    """
    Returns the annual and cumulative recurrence rates predicted by the
    recurrence model
    """
    if not isinstance(
        input_model,
        (TruncatedGRMFD, EvenlyDiscretizedMFD, YoungsCoppersmith1985MFD),
    ):
        raise ValueError("Recurrence model not recognised")
    # Get model annual occurrence rates
    annual_rates = input_model.get_annual_occurrence_rates()
    annual_rates = np.array([[val[0], val[1]] for val in annual_rates])
    # Get cumulative rates
    cumulative_rates = np.array(
        [
            np.sum(annual_rates[iloc:, 1])
            for iloc in range(0, len(annual_rates), 1)
        ]
    )
    return annual_rates, cumulative_rates


def _check_completeness_table(completeness, catalogue):
    """
    Generates the completeness table according to different instances
    """
    if isinstance(completeness, np.ndarray) and np.shape(completeness)[1] == 2:
        return completeness
    elif isinstance(completeness, float):
        return np.array(
            [[float(np.min(catalogue.data["year"])), completeness]]
        )
    elif completeness is None:
        return np.array(
            [
                [
                    float(np.min(catalogue.data["year"])),
                    np.min(catalogue.data["magnitude"]),
                ]
            ]
        )
    else:
        raise ValueError("Completeness representation not recognised")


[docs]def plot_recurrence_model( input_model, catalogue, completeness, dmag=0.1, filename=None, figure_size=(8, 6), filetype="png", dpi=300, ax=None, ): """ Plot a calculated recurrence model over an observed catalogue, adjusted for time-varying completeness """ annual_rates, cumulative_rates = _get_recurrence_model(input_model) # Get observed annual recurrence if not catalogue.end_year: catalogue.update_end_year() cent_mag, t_per, n_obs = get_completeness_counts( catalogue, completeness, dmag ) obs_rates = n_obs / t_per cum_obs_rates = np.array( [np.sum(obs_rates[i:]) for i in range(len(obs_rates))] ) if ax is None: fig, ax = plt.subplots(figsize=figure_size) else: fig = ax.get_figure() ax.semilogy(cent_mag, obs_rates, "bo") ax.semilogy(annual_rates[:, 0], annual_rates[:, 1], "b-") ax.semilogy(cent_mag, cum_obs_rates, "rs") ax.semilogy(annual_rates[:, 0], cumulative_rates, "r-") ax.grid(which="both") ax.set_xlabel("Magnitude") ax.set_ylabel("Annual Rate") ax.legend( [ "Observed Incremental Rate", "Model Incremental Rate", "Observed Cumulative Rate", "Model Cumulative Rate", ] ) ax.tick_params(labelsize=12) _save_image(fig, filename, filetype, dpi)
[docs]def plot_trunc_gr_model( aval, bval, min_mag, max_mag, dmag, catalogue=None, completeness=None, filename=None, figure_size=(8, 6), filetype="png", dpi=300, ax=None, ): """ Plots a Gutenberg-Richter model """ input_model = TruncatedGRMFD(min_mag, max_mag, dmag, aval, bval) if not catalogue: # Plot only the modelled recurrence annual_rates, cumulative_rates = _get_recurrence_model(input_model) if ax is None: fig, ax = plt.subplots(figsize=figure_size) else: fig = ax.get_figure() ax.semilogy(annual_rates[:, 0], annual_rates[:, 1], "b-") ax.semilogy(annual_rates[:, 0], cumulative_rates, "r-") ax.xlabel("Magnitude") ax.set_ylabel("Annual Rate") ax.set_legend(["Incremental Rate", "Cumulative Rate"]) _save_image(fig, filename, filetype, dpi) else: completeness = _check_completeness_table(completeness, catalogue) plot_recurrence_model( input_model, catalogue, completeness, dmag, filename=filename, figure_size=figure_size, filetype=filetype, dpi=dpi, ax=ax, )