Source code for openquake.hazardlib.gsim.weatherill_2024
# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`Weatherill2024ESHM20AvgSA`,
:class:`Weatherill2024ESHM20SlopeGeologyAvgSA`,
:class:`Weatherill2024ESHM20AvgSAHomoskedastic`
"""
from openquake.hazardlib.imt import AvgSA
from openquake.hazardlib.gsim.kotha_2020 import KothaEtAl2020ESHM20
from openquake.hazardlib.gsim.base import CoeffsTable
from openquake.hazardlib import const
[docs]class Weatherill2024ESHM20AvgSA(KothaEtAl2020ESHM20):
"""
This class implements a variation of the Kotha et al (2020; 2022) GMM that
was used for the ESHM20, but here the predicted intensity measure is
average SA (AvgSA) rather than SA. This is a form of direct AvgSA GMM,
which is fit using the same data set as that of KothaEtAl2020 with AvgSA
defined according the specifications of (among others) Iacoletti et al.
(2023):
AvgSA = sqrt(prod([0.2 x T <= T <= 1.5 x T]))
where a total of 10 linearly-spaced conditioning periods in the range are
used to define the average SA.
As the same regression methods were used to fit AvgSA then all of the
adjustment terms adopted by the ESHM20 (sigma_mu_epsilon, c3_epsilon,
ergodic etc.) can be applied to the AvgSA GMM, which allows the same logic
tree to be constructed for the direct AvgSA case.
Further details on the compilation and application of the GMM are being
developed in the following publication (in preparation):
Weatherill, G (2024) "A Regionalised Direct AvgSA Ground Motion Model for
Europe", (Journal TBC)
As this is in preparation, futue changes to the model are possible
so we therefore retain the experimental warning, which will be removed
at a future date.
"""
experimental = True
#: Set of :mod:`intensity measure types <openquake.hazardlib.imt>`
#: this GSIM can calculate. A set should contain classes from module
#: :mod:`openquake.hazardlib.imt`.
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {AvgSA, }
#: Supported standard deviation types is are only total std.dev
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL,
const.StdDev.INTER_EVENT,
const.StdDev.INTRA_EVENT}
#: Required site parameters are vs30, vs30measured and the eshm20_region
REQUIRES_SITES_PARAMETERS = set(("region", "vs30", "vs30measured"))
kind = "avgsa_ESHM20"
# Coefficients obtained direclty from the regression outputs
COEFFS = CoeffsTable(sa_damping=5, table="""\
imt e1 b1 b2 b3 c1 c2 c3 tau_c3 phis2s tau_event_0 tau_l2l phi_0 d0_obs d1_obs phi_s2s_obs d0_inf d1_inf phi_s2s_inf
AvgSA(0.050) 4.3468615401 2.1512063226 0.3717451438 0.3840026031 -1.5844962290 0.3056929868 -0.6358197233 0.2763393183 0.6594454507 0.4280092597 0.5380302118 0.4676597188 2.61783357 -0.41984752 0.40314318 1.88712924 -0.29623828 0.54897643
AvgSA(0.100) 4.6536804102 2.1243118148 0.3569931311 0.3628813315 -1.5186700529 0.2841907202 -0.7361755939 0.3101014049 0.6722188832 0.4398426213 0.5568916029 0.4648998708 2.63178976 -0.42260122 0.42319496 1.78617139 -0.28015514 0.57163410
AvgSA(0.150) 4.7945771137 2.1274812721 0.3288504315 0.3795627756 -1.4389896655 0.2501908703 -0.7667357492 0.3157034067 0.6633675533 0.4434411516 0.5202488389 0.4582624492 2.71796680 -0.43603910 0.43472118 1.78935693 -0.28055203 0.57516812
AvgSA(0.200) 4.8268358912 2.1435342480 0.3057719029 0.4094215327 -1.3832602354 0.2227051661 -0.7550607691 0.3110395382 0.6458262629 0.4435212138 0.4841042855 0.4498230477 2.86217015 -0.45823486 0.43749194 1.87918582 -0.29464359 0.56498414
AvgSA(0.250) 4.8051268888 2.1754139829 0.2918562846 0.4426226923 -1.3412962888 0.2019136688 -0.7305447434 0.3035029231 0.6280883485 0.4407924746 0.4529410313 0.4425130460 3.06323423 -0.48950776 0.43044807 2.04792489 -0.32117497 0.54608798
AvgSA(0.300) 4.7620900260 2.2141154082 0.2835145315 0.4665423314 -1.3070686825 0.1860974192 -0.7071940818 0.2957328792 0.6153905644 0.4369210190 0.4322453716 0.4352045167 3.26556277 -0.52103527 0.41182470 2.25496936 -0.35374018 0.52720419
AvgSA(0.400) 4.6332719548 2.2947237222 0.2741828304 0.5159131190 -1.2627673311 0.1619710217 -0.6499258739 0.2794709669 0.5989732123 0.4255359229 0.3951049711 0.4216267430 3.49875383 -0.55740129 0.39503497 2.47642829 -0.38853586 0.50678238
AvgSA(0.500) 4.4778294883 2.3662343667 0.2696192831 0.5660951786 -1.2319346319 0.1446120370 -0.5980583921 0.2666824382 0.5902397100 0.4169401398 0.3687464707 0.4117459145 3.71388275 -0.59068507 0.37900446 2.68871629 -0.42186426 0.49004842
AvgSA(0.600) 4.3185533698 2.4277720222 0.2652148003 0.6175414034 -1.2077156215 0.1318085467 -0.5511719494 0.2536315305 0.5876115938 0.4103320095 0.3515066109 0.4034543724 3.87941606 -0.61580447 0.36505069 2.86525837 -0.44955313 0.47419374
AvgSA(0.700) 4.1672194228 2.4894825880 0.2650749306 0.6679669266 -1.1874512590 0.1228799964 -0.5133671436 0.2433881796 0.5867287159 0.4065674107 0.3347690807 0.3963077735 3.97630461 -0.62992274 0.36262323 2.98664886 -0.46856927 0.46461818
AvgSA(0.800) 4.0288646652 2.5542391769 0.2695180409 0.7085251974 -1.1727356202 0.1173776862 -0.4805689498 0.2315398128 0.5861237737 0.4053007828 0.3200552353 0.3900808395 4.04577748 -0.63992675 0.36701024 3.08292173 -0.48365672 0.45841564
AvgSA(0.900) 3.8947701849 2.6046828029 0.2708607782 0.7424403141 -1.1636251550 0.1140958019 -0.4495322496 0.2191350303 0.5868406504 0.4054880421 0.3128836707 0.3847701262 4.09468998 -0.64675747 0.37430943 3.17474995 -0.49805311 0.45633438
AvgSA(1.000) 3.7694600868 2.6564485947 0.2755580747 0.7773839055 -1.1569230243 0.1119008735 -0.4228857116 0.2077140636 0.5883712385 0.4076373926 0.3052586715 0.3809345790 4.11952534 -0.64980249 0.38194385 3.26430061 -0.51212861 0.45553548
AvgSA(1.250) 3.4706631778 2.7640114111 0.2863971445 0.8515842010 -1.1500139705 0.1098964051 -0.3642458982 0.1878359113 0.5911312275 0.4175841723 0.2877202407 0.3732270011 4.11297148 -0.64828200 0.38649790 3.37305996 -0.52913277 0.45322510
AvgSA(1.500) 3.2190113497 2.8630381148 0.3011679747 0.8833932182 -1.1522344562 0.1111509093 -0.3154533960 0.1759946561 0.5916370848 0.4251689388 0.2791019570 0.3684836574 4.09477274 -0.64520087 0.38407000 3.48254160 -0.54618847 0.45284527
AvgSA(1.750) 3.0052586300 2.9878647999 0.3413194350 0.9057249259 -1.1533431170 0.1156390944 -0.2832581008 0.1664335521 0.5921743466 0.4297625190 0.2848615012 0.3646174735 4.04481293 -0.63766481 0.38178972 3.54860458 -0.55647158 0.45407701
AvgSA(2.000) 2.7977898222 3.0610742969 0.3563412955 0.9382679687 -1.1527918383 0.1203796346 -0.2618124393 0.1609297797 0.5915803874 0.4379178489 0.2782289105 0.3621184180 3.98022776 -0.62800105 0.37429046 3.58857586 -0.56254997 0.45902122
AvgSA(2.500) 2.4526046480 3.2447441319 0.4175895089 0.9935574572 -1.1555045836 0.1319754237 -0.2362881913 0.1606151346 0.5851395458 0.4487655553 0.2727004457 0.3564559472 3.88094598 -0.61300917 0.36664751 3.58945419 -0.56256504 0.46109358
AvgSA(3.000) 2.1846343267 3.3795075185 0.4680279735 1.0273202155 -1.1533536786 0.1423911641 -0.2329857032 0.1478724120 0.5834092888 0.4569015623 0.2736582001 0.3508293944 3.78141847 -0.59784839 0.35646268 3.51803344 -0.55144112 0.45739762
AvgSA(3.500) 1.9409098870 3.4656531050 0.5118696601 1.0856421414 -1.1701293398 0.1553162861 -0.2020706851 0.1410898528 0.5750292172 0.4425943058 0.2958590722 0.3492035567 3.60781997 -0.57117670 0.34930242 3.48405639 -0.54602924 0.45663788
AvgSA(4.000) 1.7015054228 3.5163002844 0.5312213268 1.1456993040 -1.1841200080 0.1711021029 -0.1838747563 0.1437446953 0.5669140794 0.4500152389 0.2825370206 0.3499904629 3.43147290 -0.54394985 0.34725671 3.44930328 -0.54050316 0.45782846
AvgSA(4.500) 1.6213774162 3.7391842699 0.6641371123 1.1288485321 -1.1829236019 0.1847235866 -0.1807585867 0.1213816721 0.5757075561 0.4340712588 0.2587634879 0.3381428158 3.24877975 -0.51560770 0.35330607 3.43813135 -0.53856720 0.46219582
AvgSA(5.000) 1.4308131096 3.7717226445 0.6801268753 1.1816942442 -1.1999994884 0.1988877433 -0.1645299267 0.1239688756 0.5681631639 0.4376824137 0.2528453711 0.3391870321 3.07021475 -0.48775155 0.37025310 3.46440379 -0.54233758 0.47057169
""")
[docs]class Weatherill2024ESHM20SlopeGeologyAvgSA(Weatherill2024ESHM20AvgSA):
"""
Adaptation of the ESHM20-implemented Kotha et al. (2020) model taking
direct Average Sa (AvgSA). For use when defining site amplification
based on with slope and geology rather than inferred/measured Vs30.
"""
experimental = True
kind = "avgsa_ESHM20_geology"
#: Set of :mod:`intensity measure types <openquake.hazardlib.imt>`
#: this GSIM can calculate. A set should contain classes from module
#: :mod:`openquake.hazardlib.imt`.
DEFINED_FOR_INTENSITY_MEASURE_TYPES = {AvgSA, }
#: Supported standard deviation types is are only total std.dev
DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL,
const.StdDev.INTER_EVENT,
const.StdDev.INTRA_EVENT}
#: Required site parameter is not set
REQUIRES_SITES_PARAMETERS = {"region", "slope", "geology"}
#: Geological Units
GEOLOGICAL_UNITS = [b"CENOZOIC", b"HOLOCENE", b"JURASSIC-TRIASSIC",
b"CRETACEOUS", b"PALEOZOIC", b"PLEISTOCENE",
b"PRECAMBRIAN", b"UNKNOWN"]
COEFFS_FIXED = CoeffsTable(sa_damping=5, table="""\
imt V1 V2 phi_s2s
AvgSA(0.0500) -0.23505110 -0.09359789 0.57524777
AvgSA(0.1000) -0.22027431 -0.08881495 0.58812515
AvgSA(0.1500) -0.21840469 -0.08830691 0.58411598
AvgSA(0.2000) -0.22694233 -0.09108064 0.56863949
AvgSA(0.2500) -0.24488926 -0.09681041 0.54758380
AvgSA(0.3000) -0.26548340 -0.10244796 0.52611308
AvgSA(0.4000) -0.28638555 -0.10745711 0.50708288
AvgSA(0.5000) -0.30532380 -0.11082860 0.49211675
AvgSA(0.6000) -0.32013378 -0.11294452 0.48141461
AvgSA(0.7000) -0.32893266 -0.11272525 0.47630018
AvgSA(0.8000) -0.33648250 -0.11327263 0.47333633
AvgSA(0.9000) -0.34306372 -0.11348846 0.47079169
AvgSA(1.0000) -0.35113716 -0.11364569 0.46851346
AvgSA(1.2500) -0.36007402 -0.11466989 0.46559047
AvgSA(1.5000) -0.37022391 -0.11702849 0.46276343
AvgSA(1.7500) -0.37390828 -0.11724920 0.45873202
AvgSA(2.0000) -0.37410840 -0.11642190 0.45449554
AvgSA(2.5000) -0.36880152 -0.11260637 0.45001503
AvgSA(3.0000) -0.35812342 -0.10696009 0.44400554
AvgSA(3.5000) -0.35244242 -0.10332236 0.44052465
AvgSA(4.0000) -0.35057632 -0.10238648 0.43874188
AvgSA(4.5000) -0.35153004 -0.10279447 0.43845098
AvgSA(5.0000) -0.35501872 -0.10406843 0.43952854
""")
COEFFS_RANDOM_INT = CoeffsTable(sa_damping=5, table="""\
imt PRECAMBRIAN PALEOZOIC JURASSIC-TRIASSIC CRETACEOUS CENOZOIC PLEISTOCENE HOLOCENE UNKNOWN
AvgSA(0.0500) 0.04440431 -0.02892322 -0.13716881 -0.05230186 -0.12125642 0.13765416 0.06883992 0.08875193
AvgSA(0.1000) 0.05826280 -0.03109745 -0.13813473 -0.06352593 -0.13533973 0.15914360 0.05630794 0.09438349
AvgSA(0.1500) 0.06136444 -0.03582568 -0.14426874 -0.07207127 -0.13073530 0.16589340 0.05878894 0.09685420
AvgSA(0.2000) 0.05489489 -0.04393126 -0.15284732 -0.07872104 -0.11334863 0.16353078 0.07350189 0.09692070
AvgSA(0.2500) 0.03889834 -0.05700330 -0.16243929 -0.08626987 -0.08802799 0.15550703 0.10516672 0.09416837
AvgSA(0.3000) 0.01726904 -0.07875437 -0.16472931 -0.08869378 -0.06875478 0.16247269 0.12386386 0.09732666
AvgSA(0.4000) -0.00698559 -0.09852521 -0.16288454 -0.09293336 -0.04994895 0.17192187 0.14216443 0.09719135
AvgSA(0.5000) -0.03405274 -0.10755560 -0.15122228 -0.09344633 -0.02605248 0.17131167 0.15637188 0.08464589
AvgSA(0.6000) -0.05530501 -0.11151177 -0.14050049 -0.09475509 -0.00910426 0.17319342 0.16415751 0.07382569
AvgSA(0.7000) -0.07046497 -0.10186102 -0.12503738 -0.09121494 0.00954194 0.15915530 0.16881371 0.05106735
AvgSA(0.8000) -0.08100857 -0.10108175 -0.11704089 -0.09029657 0.01785638 0.15923935 0.17297038 0.03936166
AvgSA(0.9000) -0.08690111 -0.10550544 -0.10866281 -0.08778019 0.01591340 0.17214756 0.16417060 0.03661799
AvgSA(1.0000) -0.09354606 -0.10486674 -0.09964153 -0.08371551 0.01831340 0.17557179 0.16050531 0.02737934
AvgSA(1.2500) -0.09940881 -0.10111492 -0.09054299 -0.07908341 0.02037411 0.17235513 0.15624033 0.02118056
AvgSA(1.5000) -0.10716225 -0.09805908 -0.08525698 -0.07701466 0.02482292 0.16497320 0.16166599 0.01603086
AvgSA(1.7500) -0.11240712 -0.09640150 -0.07907923 -0.07492911 0.02475436 0.16353442 0.15582629 0.01870188
AvgSA(2.0000) -0.11302015 -0.09738500 -0.07435901 -0.07247754 0.01973015 0.17174738 0.14805774 0.01770642
AvgSA(2.5000) -0.10428439 -0.08655460 -0.06468280 -0.06571842 0.01668539 0.16211274 0.13643014 0.00601195
AvgSA(3.0000) -0.09353572 -0.07076234 -0.05435509 -0.05966450 0.01505710 0.14951429 0.12893961 -0.01519336
AvgSA(3.5000) -0.08535614 -0.05972990 -0.04931505 -0.05545398 0.01676627 0.13843245 0.12889559 -0.03423925
AvgSA(4.0000) -0.08408289 -0.05771713 -0.05213470 -0.05701903 0.02138313 0.13457367 0.14136352 -0.04636655
AvgSA(4.5000) -0.08523161 -0.06157877 -0.05678981 -0.05891177 0.02493221 0.13809193 0.14938582 -0.04989800
AvgSA(5.0000) -0.08707645 -0.07066086 -0.06023941 -0.05852453 0.02485745 0.15039280 0.14328560 -0.04203460
""")
COEFFS_RANDOM_GRAD = CoeffsTable(sa_damping=5, table="""\
imt PRECAMBRIAN PALEOZOIC JURASSIC-TRIASSIC CRETACEOUS CENOZOIC PLEISTOCENE HOLOCENE UNKNOWN
AvgSA(0.0500) 0.01019174 -0.00671749 -0.03159087 -0.01206327 -0.02807261 0.03183337 0.01588836 0.02053076
AvgSA(0.1000) 0.01425687 -0.00742289 -0.03359498 -0.01538489 -0.03264778 0.03842344 0.01358267 0.02278758
AvgSA(0.1500) 0.01437239 -0.00841885 -0.03389235 -0.01686420 -0.03065271 0.03889881 0.01385255 0.02270436
AvgSA(0.2000) 0.01170863 -0.00949656 -0.03253001 -0.01682497 -0.02449309 0.03518655 0.01560313 0.02084633
AvgSA(0.2500) 0.00705422 -0.01006083 -0.03005226 -0.01631633 -0.01598760 0.02857851 0.01964204 0.01714224
AvgSA(0.3000) 0.00301254 -0.01247711 -0.02445906 -0.01294305 -0.01138575 0.02565267 0.01718870 0.01541106
AvgSA(0.4000) 0.00060871 -0.01269964 -0.01810166 -0.00958284 -0.00847633 0.02227698 0.01287763 0.01309715
AvgSA(0.5000) -0.00071633 -0.00917333 -0.00896442 -0.00463103 -0.00476396 0.01421873 0.00609513 0.00793522
AvgSA(0.6000) 0.00058715 -0.00464656 -0.00228301 -0.00076376 -0.00363741 0.00707727 -0.00090492 0.00457125
AvgSA(0.7000) 0.00300945 0.00312199 0.00490062 0.00364847 -0.00123591 -0.00482704 -0.00761969 -0.00099789
AvgSA(0.8000) 0.00494318 0.00665256 0.00804901 0.00624613 -0.00087300 -0.01059914 -0.01156916 -0.00284959
AvgSA(0.9000) 0.00845968 0.00738209 0.01049663 0.00927053 -0.00373428 -0.01211807 -0.01873849 -0.00101808
AvgSA(1.0000) 0.01281811 0.01009466 0.01266798 0.01167071 -0.00547594 -0.01734720 -0.02466090 0.00023260
AvgSA(1.2500) 0.01804985 0.01425655 0.01528740 0.01433855 -0.00642659 -0.02469494 -0.03057985 -0.00023097
AvgSA(1.5000) 0.02178052 0.01862543 0.01683443 0.01585680 -0.00566692 -0.03235509 -0.03269212 -0.00238303
AvgSA(1.7500) 0.02602045 0.02302291 0.01921894 0.01736831 -0.00599799 -0.03694157 -0.03760119 -0.00508986
AvgSA(2.0000) 0.02903551 0.02303283 0.01974201 0.01849300 -0.00773962 -0.03724914 -0.04329328 -0.00202131
AvgSA(2.5000) 0.03335929 0.02443580 0.02115975 0.02082427 -0.00890809 -0.04352827 -0.05107738 0.00373462
AvgSA(3.0000) 0.03582721 0.02429116 0.02152150 0.02287830 -0.00905799 -0.04962435 -0.05646569 0.01062986
AvgSA(3.5000) 0.03675706 0.02468699 0.02183835 0.02387250 -0.00893185 -0.05516898 -0.05878460 0.01573055
AvgSA(4.0000) 0.03384701 0.02392437 0.02059362 0.02285885 -0.00748610 -0.05664430 -0.05437988 0.01728643
AvgSA(4.5000) 0.03093938 0.02341728 0.01998863 0.02137510 -0.00724577 -0.05478948 -0.05063722 0.01695209
AvgSA(5.0000) 0.03004586 0.02383842 0.02117566 0.02018591 -0.00963392 -0.04934248 -0.05148373 0.01521428
""")
[docs]class Weatherill2024ESHM20AvgSAHomoskedastic(Weatherill2024ESHM20AvgSA):
"""Variant of the Weatherill2024ESHM20 direct GMPE for AvgSA with the
homoskedastic sigma coming from the original mixed effects regression
"""
experimental = True
kind = "avgsa_ESHM20_homoskedastic"