Source code for openquake.hmtk.seismicity.smoothing.utils

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2020 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

'''
Module :mod:`openquake.hmtk.seismicity.smoothing.utils` implements
utility functions for smoothed seismicity analysis
'''

import numpy as np


[docs]def hermann_adjustment_factors(bval, min_mag, mag_inc): ''' Returns the adjustment factors (fval, fival) proposed by Hermann (1978) :param float bval: Gutenberg & Richter (1944) b-value :param np.ndarray min_mag: Minimum magnitude of completeness table :param non-negative float mag_inc: Magnitude increment of the completeness table ''' fval = 10. ** (bval * min_mag) fival = 10. ** (bval * (mag_inc / 2.)) - 10. ** (-bval * (mag_inc / 2.)) return fval, fival
[docs]def incremental_a_value(bval, min_mag, mag_inc): ''' Incremental a-value from cumulative - using the version of the Hermann (1979) formula described in Wesson et al. (2003) :param float bval: Gutenberg & Richter (1944) b-value :param np.ndarray min_mag: Minimum magnitude of completeness table :param float mag_inc: Magnitude increment of the completeness table ''' a_cum = 10. ** (bval * min_mag) a_inc = a_cum + np.log10((10. ** (bval * mag_inc)) - (10. ** (-bval * mag_inc))) return a_inc
[docs]def get_weichert_factor(beta, cmag, cyear, end_year): ''' Gets the Weichert adjustment factor for each the magnitude bins :param float beta: Beta value of Gutenberg & Richter parameter (b * log(10.)) :param np.ndarray cmag: Magnitude values of the completeness table :param np.ndarray cyear: Year values of the completeness table :param float end_year: Last year for consideration in the catalogue :returns: Weichert adjustment factor (float) ''' if len(cmag) > 1: # cval corresponds to the mid-point of the completeness bins # In the original code it requires that the magnitude bins be # equal sizedclass IsotropicGaussian(BaseSmoothingKernel): dmag = (cmag[1:] + cmag[:-1]) / 2. cval = np.hstack([dmag, cmag[-1] + (dmag[-1] - cmag[-2])]) else: # Single completeness value so Weichert factor is unity return 1.0 / (end_year - cyear[0] + 1), None t_f = sum(np.exp(-beta * cval)) / sum((end_year - cyear + 1) * np.exp(-beta * cval)) return t_f, cval
[docs]def check_completeness_table(completeness_table, catalogue): ''' Check to ensure completeness table is in the correct format `completeness_table = np.array([[year_, mag_i]]) for i in number of bins` :param np.ndarray completeness_table: Completeness table in format [[year, mag]] :param catalogue: Instance of openquake.hmtk.seismicity.catalogue.Catalogue class :returns: Correct completeness table ''' if isinstance(completeness_table, np.ndarray): assert np.shape(completeness_table)[1] == 2 return completeness_table elif isinstance(completeness_table, list): # Assuming list has only two elements assert len(completeness_table) == 2 return np.array([[completeness_table[0], completeness_table[1]]]) else: # Accepts the minimum magnitude and earliest year of the catalogue return np.array([[np.min(catalogue.data['year']), np.min(catalogue.data['magnitude'])]])
[docs]def get_even_magnitude_completeness(completeness_table, catalogue=None): ''' To make the magnitudes evenly spaced, render to a constant 0.1 magnitude unit :param np.ndarray completeness_table: Completeness table in format [[year, mag]] :param catalogue: Instance of openquake.hmtk.seismicity.catalogue.Catalogue class :returns: Correct completeness table ''' mmax = np.floor(10. * np.max(catalogue.data['magnitude'])) / 10. check_completeness_table(completeness_table, catalogue) cmag = np.hstack([completeness_table[:, 1], mmax + 0.1]) cyear = np.hstack([completeness_table[:, 0], completeness_table[-1, 0]]) if np.shape(completeness_table)[0] == 1: # Simple single-valued table return completeness_table, 0.1 for iloc in range(0, len(cmag) - 1): mrange = np.arange(np.floor(10. * cmag[iloc]) / 10., (np.ceil(10. * cmag[iloc + 1]) / 10.), 0.1) temp_table = np.column_stack([ cyear[iloc] * np.ones(len(mrange), dtype=float), mrange]) if iloc == 0: completeness_table = np.copy(temp_table) else: completeness_table = np.vstack([completeness_table, temp_table]) # completeness_table = np.vstack([completeness_table, # np.array([[cyear[-1], cmag[-1]]])]) return completeness_table, 0.1