Source code for openquake.hmtk.seismicity.occurrence.b_maximum_likelihood

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
# LICENSE
#
# Copyright (C) 2010-2020 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.

"""
"""

import numpy as np
from openquake.hmtk.seismicity.occurrence.utils import input_checks, recurrence_table
from openquake.hmtk.seismicity.occurrence.base import (
    SeismicityOccurrence, OCCURRENCE_METHODS)
from openquake.hmtk.seismicity.occurrence.aki_maximum_likelihood import AkiMaxLikelihood


[docs]@OCCURRENCE_METHODS.add( 'calculate', **{ 'completeness': True, 'reference_magnitude': 0.0, 'magnitude_interval': 0.1, 'Average Type': ['Weighted', 'Harmonic']}) class BMaxLikelihood(SeismicityOccurrence): """ Implements maximum likelihood calculations taking into account time variation in completeness" """
[docs] def calculate(self, catalogue, config, completeness=None): """ Calculates recurrence parameters a_value and b_value, and their respective uncertainties :param catalogue: Earthquake Catalogue An instance of :class:`openquake.hmtk.seismicity.catalogue` :param dict config: A configuration dictionary; the only parameter that can be defined in this case if the type of average to be applied in the calculation :param list or numpy.ndarray completeness: Completeness table """ # Input checks cmag, ctime, ref_mag, dmag, config = input_checks(catalogue, config, completeness) # Check the configuration if not config['Average Type'] in ['Weighted', 'Harmonic']: raise ValueError('Average type not recognised in bMaxLiklihood!') return self._b_ml(catalogue, config, cmag, ctime, ref_mag, dmag)
def _b_ml(self, catalogue, config, cmag, ctime, ref_mag, dmag): end_year = float(catalogue.end_year) catalogue = catalogue.data ival = 0 mag_eq_tolerance = 1E-5 aki_ml = AkiMaxLikelihood() while ival < np.shape(ctime)[0]: id0 = np.abs(ctime - ctime[ival]) < mag_eq_tolerance m_c = np.min(cmag[id0]) print('--- ctime', ctime[ival], ' m_c', m_c) # Find events later than cut-off year, and with magnitude # greater than or equal to the corresponding completeness # magnitude. m_c - mag_eq_tolerance is required to correct # floating point differences. id1 = np.logical_and( catalogue['year'] >= ctime[ival], catalogue['magnitude'] >= (m_c - mag_eq_tolerance)) # Get a- and b- value for the selected events temp_rec_table = recurrence_table(catalogue['magnitude'][id1], dmag, catalogue['year'][id1], end_year - ctime[ival] + 1) bval, sigma_b = aki_ml._aki_ml(temp_rec_table[:, 0], temp_rec_table[:, 1], dmag, m_c) if ival == 0: gr_pars = np.array([np.hstack([bval, sigma_b])]) neq = np.sum(id1) # Number of events else: gr_pars = np.vstack([gr_pars, np.hstack([bval, sigma_b])]) neq = np.hstack([neq, np.sum(id1)]) ival = ival + np.sum(id0) # Get average GR parameters bval, sigma_b = self._average_parameters( gr_pars, neq, config['Average Type']) aval = self._calculate_a_value(bval, np.float(np.sum(neq)), cmag, ctime, catalogue['magnitude'], end_year, dmag) sigma_a = self._calculate_a_value(bval + sigma_b, np.float(np.sum(neq)), cmag, ctime, catalogue['magnitude'], end_year, dmag) if not config['reference_magnitude']: return bval,\ sigma_b,\ aval,\ sigma_a - aval else: rate = 10. ** (aval - bval * config['reference_magnitude']) sigma_rate = 10. ** (sigma_a - bval * config['reference_magnitude']) - rate return bval,\ sigma_b,\ rate,\ sigma_rate def _average_parameters(self, gr_params, neq, average_type='Weighted'): """ Calculates the average of a set of Gutenberg-Richter parameters depending on the average type :param numpy.ndarray gr_params: Gutenberg-Richter parameters [b, sigma_b, a, sigma_a] :param numpy.ndarray neq: """ if np.shape(gr_params)[0] != neq.size: raise ValueError('Number of weights does not correspond' ' to number of parameters') if 'Harmonic' in average_type: average_parameters = self._harmonic_mean(gr_params, neq) else: average_parameters = self._weighted_mean(gr_params, neq) bval = average_parameters[0] sigma_b = average_parameters[1] return bval, sigma_b def _calculate_a_value(self, bvalue, nvalue, cmag, cyear, magnitude, end_year, dmag): """ Calculates the a-value using the method of Weichert (1980) and McGuire (2004) """ mmin = cmag[0] mmax = np.max(magnitude) if mmax > np.max(cmag): cmag = np.hstack([cmag, mmax + dmag]) target_mag = (cmag[:-1] + cmag[1:]) / 2. nyear = end_year - cyear + 1. beta = bvalue * np.log(10.) rate_mmin = nvalue * np.sum(np.exp(-beta * target_mag)) /\ np.sum(nyear * np.exp(-beta * target_mag)) return np.log10(rate_mmin) + bvalue * mmin def _weighted_mean(self, parameters, neq): '''Simple weighted mean''' weight = neq.astype(float) / np.sum(neq) if np.shape(parameters)[0] != weight.size: raise ValueError('Parameter vector not same shape as weights') else: average_value = np.zeros(np.shape(parameters)[1], dtype=float) for iloc in range(0, np.shape(parameters)[1]): average_value[iloc] = np.sum(parameters[:, iloc] * weight) return average_value def _harmonic_mean(self, parameters, neq): '''Harmonic mean''' weight = neq.astype(float) / np.sum(neq) if np.shape(parameters)[0] != weight.size: raise ValueError('Parameter vector not same shape as weights') average_value = np.zeros(np.shape(parameters)[1], dtype=float) for iloc in range(0, np.shape(parameters)[1]): average_value[iloc] = 1. / np.sum( (weight * (1. / parameters[:, iloc]))) return average_value