Source code for openquake.calculators.disaggregation

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2020 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Disaggregation calculator core functionality
"""
import logging
import operator
import numpy

from openquake.baselib import parallel, hdf5
from openquake.baselib.general import (
    AccumDict, block_splitter, get_array_nbytes, humansize)
from openquake.baselib.python3compat import encode
from openquake.hazardlib import stats
from openquake.hazardlib.calc import disagg
from openquake.hazardlib.imt import from_string
from openquake.hazardlib.gsim.base import ContextMaker, DistancesContext
from openquake.hazardlib.contexts import RuptureContext
from openquake.hazardlib.tom import PoissonTOM
from openquake.commonlib import util
from openquake.calculators import getters
from openquake.calculators import base

weight = operator.attrgetter('weight')
DISAGG_RES_FMT = '%(rlz)s%(imt)s-%(sid)s-%(poe)s/'
BIN_NAMES = 'mag', 'dist', 'lon', 'lat', 'eps', 'trt'
POE_TOO_BIG = '''\
Site #%d: you are trying to disaggregate for poe=%s.
However the source model produces at most probabilities
of %.7f for rlz=#%d, IMT=%s.
The disaggregation PoE is too big or your model is wrong,
producing too small PoEs.'''


def _check_curves(sid, rlzs, curves, imtls, poes_disagg):
    # there may be sites where the sources are too small to produce
    # an effect at the given poes_disagg
    bad = 0
    for rlz, curve in zip(rlzs, curves):
        for imt in imtls:
            max_poe = curve[imt].max()
            for poe in poes_disagg:
                if poe > max_poe:
                    logging.warning(POE_TOO_BIG, sid, poe, max_poe, rlz, imt)
                    bad += 1
    return bool(bad)


def _trt_matrix(matrices, num_trts):
    # convert a dict trti -> matrix into a single matrix of shape (T, ...)
    trti = next(iter(matrices))
    mat = numpy.zeros((num_trts,) + matrices[trti].shape)
    for trti in matrices:
        mat[trti] = matrices[trti]
    return mat


def _iml4(rlzs, iml_disagg, imtls, poes_disagg, curves):
    # an array of shape (N, M, P, Z) with intensities
    N, Z = rlzs.shape
    M = len(imtls)
    P = len(poes_disagg)
    iml4 = numpy.empty((N, M, P, Z))
    iml4.fill(numpy.nan)
    for (s, z), rlz in numpy.ndenumerate(rlzs):
        curve = curves[s][z]
        if poes_disagg == (None,):
            for m, imt in enumerate(imtls):
                iml4[s, m, 0, z] = imtls[imt]
        elif curve:
            for m, imt in enumerate(imtls):
                poes = curve[imt][::-1]
                imls = imtls[imt][::-1]
                iml4[s, m, :, z] = numpy.interp(poes_disagg, poes, imls)
    return hdf5.ArrayWrapper(
        iml4, dict(imts=[from_string(imt) for imt in imtls], rlzs=rlzs))


[docs]def compute_disagg(dstore, idxs, cmaker, iml4, trti, bin_edges, monitor): # see https://bugs.launchpad.net/oq-engine/+bug/1279247 for an explanation # of the algorithm used """ :param dstore a DataStore instance :param idxs: an array of indices to ruptures :param cmaker: a :class:`openquake.hazardlib.gsim.base.ContextMaker` instance :param iml4: an ArrayWrapper of shape (N, M, P, Z) :param trti: tectonic region type index :param bin_egdes: a quintet (mag_edges, dist_edges, lon_edges, lat_edges, eps_edges) :param monitor: monitor of the currently running job :returns: a dictionary sid -> 8D-array """ with monitor('reading rupdata', measuremem=True): dstore.open('r') oq = dstore['oqparam'] sitecol = dstore['sitecol'] rupdata = {k: dstore['rup/' + k][idxs] for k in dstore['rup']} RuptureContext.temporal_occurrence_model = PoissonTOM( oq.investigation_time) pne_mon = monitor('disaggregate_pne', measuremem=False) mat_mon = monitor('build_disagg_matrix', measuremem=True) gmf_mon = monitor('disagg mean_std', measuremem=False) for sid, iml3 in zip(sitecol.sids, iml4): singlesite = sitecol.filtered([sid]) bins = disagg.get_bins(bin_edges, sid) rlzs = [iml4.rlzs[sid, z] for z in range(iml4.shape[-1])] ctxs = [] ok, = numpy.where( rupdata['rrup_'][:, sid] <= cmaker.maximum_distance(cmaker.trt)) for ridx in ok: # consider only the ruptures close to the site rctx = RuptureContext((par, rupdata[par][ridx]) for par in rupdata if not par.endswith('_')) dctx = DistancesContext((par[:-1], rupdata[par][ridx, [sid]]) for par in rupdata if par.endswith('_')) ctxs.append((rctx, dctx)) matrix = disagg.build_matrix( cmaker, singlesite, ctxs, iml3, iml4.imts, rlzs, oq.num_epsilon_bins, bins, pne_mon, mat_mon, gmf_mon) if matrix.any(): yield {'trti': trti, sid: matrix}
[docs]def agg_probs(*probs): """ Aggregate probabilities withe the usual formula 1 - (1 - P1) ... (1 - Pn) """ acc = 1. - probs[0] for prob in probs[1:]: acc *= 1. - prob return 1. - acc
[docs]def get_indices(dstore, concurrent_tasks): acc = AccumDict(accum=[]) # grp_id -> indices n = 0 grp_ids = dstore['grp_ids'][()] for idx, gidx in enumerate(dstore['rup/grp_id'][()]): n += len(grp_ids[gidx]) for grp_id in grp_ids[gidx]: acc[grp_id].append(idx) blocksize = numpy.ceil(n / concurrent_tasks) indices = [] for grp_id in dstore['full_lt'].trt_by_grp: blocks = list(block_splitter(acc[grp_id], blocksize)) indices.append(blocks) return indices
[docs]@base.calculators.add('disaggregation') class DisaggregationCalculator(base.HazardCalculator): """ Classical PSHA disaggregation calculator """ precalc = 'classical' accept_precalc = ['classical', 'disaggregation']
[docs] def init(self): if self.N >= 32768: raise ValueError('You can disaggregate at max 32,768 sites') few = self.oqparam.max_sites_disagg if self.N > few: raise ValueError( 'The number of sites is to disaggregate is %d, but you have ' 'max_sites_disagg=%d' % (self.N, few)) super().init()
[docs] def execute(self): """Performs the disaggregation""" return self.full_disaggregation()
[docs] def get_curve(self, sid, rlzs): """ Get the hazard curves for the given site ID and realizations. :param sid: site ID :param rlzs: a matrix of indices of shape Z :returns: a list of Z arrays of PoEs """ poes = [] for rlz in rlzs: pmap = self.pgetter.get(rlz) poes.append(pmap[sid].convert(self.oqparam.imtls) if sid in pmap else None) return poes
[docs] def check_poes_disagg(self, curves, rlzs): """ Raise an error if the given poes_disagg are too small compared to the hazard curves. """ oq = self.oqparam # there may be sites where the sources are too small to produce # an effect at the given poes_disagg ok_sites = [] for sid in self.sitecol.sids: if all(curve is None for curve in curves[sid]): ok_sites.append(sid) continue bad = _check_curves(sid, rlzs[sid], curves[sid], oq.imtls, oq.poes_disagg) if not bad: ok_sites.append(sid) if len(ok_sites) == 0: raise SystemExit('Cannot do any disaggregation') elif len(ok_sites) < self.N: logging.warning('Doing the disaggregation on' % self.sitecol) return ok_sites
[docs] def full_disaggregation(self): """ Run the disaggregation phase. """ oq = self.oqparam tl = oq.truncation_level src_filter = self.src_filter() if hasattr(self, 'csm'): for sg in self.csm.src_groups: if sg.atomic: raise NotImplementedError( 'Atomic groups are not supported yet') self.full_lt = self.datastore['full_lt'] self.poes_disagg = oq.poes_disagg or (None,) self.imts = list(oq.imtls) self.ws = [rlz.weight for rlz in self.full_lt.get_realizations()] self.pgetter = getters.PmapGetter( self.datastore, self.ws, self.sitecol.sids) # build array rlzs (N, Z) if oq.rlz_index is None: Z = oq.num_rlzs_disagg rlzs = numpy.zeros((self.N, Z), int) if self.R > 1: for sid in self.sitecol.sids: curves = numpy.array( [pc.array for pc in self.pgetter.get_pcurves(sid)]) mean = getters.build_stat_curve( curves, oq.imtls, stats.mean_curve, self.ws) rlzs[sid] = util.closest_to_ref(curves, mean.array)[:Z] self.datastore['best_rlzs'] = rlzs else: Z = len(oq.rlz_index) rlzs = numpy.zeros((self.N, Z), int) for z in range(Z): rlzs[:, z] = oq.rlz_index[z] assert Z <= self.R, (Z, self.R) self.Z = Z self.rlzs = rlzs if oq.iml_disagg: # no hazard curves are needed self.poe_id = {None: 0} curves = [[None for z in range(Z)] for s in range(self.N)] self.ok_sites = set(self.sitecol.sids) else: self.poe_id = {poe: i for i, poe in enumerate(oq.poes_disagg)} curves = [self.get_curve(sid, rlzs[sid]) for sid in self.sitecol.sids] self.ok_sites = set(self.check_poes_disagg(curves, rlzs)) self.iml4 = _iml4(rlzs, oq.iml_disagg, oq.imtls, self.poes_disagg, curves) if oq.disagg_by_src: self.build_disagg_by_src(rlzs) eps_edges = numpy.linspace(-tl, tl, oq.num_epsilon_bins + 1) # build trt_edges trts = tuple(self.full_lt.trts) trt_num = {trt: i for i, trt in enumerate(trts)} self.trts = trts # build mag_edges mags = set() for trt, dset in self.datastore['source_mags'].items(): mags.update(float(mag) for mag in dset[()]) mags = sorted(mags) mag_edges = oq.mag_bin_width * numpy.arange( int(numpy.floor(min(mags) / oq.mag_bin_width)), int(numpy.ceil(max(mags) / oq.mag_bin_width) + 1)) # build dist_edges maxdist = max(oq.maximum_distance(trt) for trt in trts) dist_edges = oq.distance_bin_width * numpy.arange( 0, int(numpy.ceil(maxdist / oq.distance_bin_width) + 1)) # build eps_edges eps_edges = numpy.linspace(-tl, tl, oq.num_epsilon_bins + 1) # build lon_edges, lat_edges per sid bbs = src_filter.get_bounding_boxes(mag=max(mags)) lon_edges, lat_edges = {}, {} # by sid for sid, bb in zip(self.sitecol.sids, bbs): lon_edges[sid], lat_edges[sid] = disagg.lon_lat_bins( bb, oq.coordinate_bin_width) self.bin_edges = mag_edges, dist_edges, lon_edges, lat_edges, eps_edges shapedic = self.save_bin_edges() del shapedic['trt'] shapedic['N'] = self.N shapedic['M'] = len(oq.imtls) shapedic['P'] = len(oq.poes_disagg) shapedic['Z'] = Z shapedic['concurrent_tasks'] = oq.concurrent_tasks nbytes, msg = get_array_nbytes(shapedic) if nbytes > oq.max_data_transfer: raise ValueError( 'Estimated data transfer too big\n%s > max_data_transfer=%s' % (msg, humansize(oq.max_data_transfer))) logging.info('Estimated data transfer: %s', msg) self.imldict = {} # sid, rlz, poe, imt -> iml for s in self.sitecol.sids: for z, rlz in enumerate(rlzs[s]): for p, poe in enumerate(self.poes_disagg): for m, imt in enumerate(oq.imtls): self.imldict[s, rlz, poe, imt] = self.iml4[s, m, p, z] # submit #groups disaggregation tasks dstore = (self.datastore.parent if self.datastore.parent else self.datastore) indices = get_indices(dstore, oq.concurrent_tasks or 1) self.datastore.swmr_on() smap = parallel.Starmap(compute_disagg, h5=self.datastore.hdf5) for grp_id, trt in self.full_lt.trt_by_grp.items(): logging.info('Group #%d, sending rup_data for %s', grp_id, trt) trti = trt_num[trt] cmaker = ContextMaker( trt, self.full_lt.get_rlzs_by_gsim(grp_id), {'truncation_level': oq.truncation_level, 'maximum_distance': src_filter.integration_distance, 'filter_distance': oq.filter_distance, 'imtls': oq.imtls}) for idxs in indices[grp_id]: smap.submit((dstore, idxs, cmaker, self.iml4, trti, self.bin_edges)) results = smap.reduce(self.agg_result, AccumDict(accum={})) return results # sid -> trti-> 8D array
[docs] def agg_result(self, acc, result): """ Collect the results coming from compute_disagg into self.results. :param acc: dictionary sid -> trti -> 8D array :param result: dictionary with the result coming from a task """ with self.monitor('aggregating disagg matrices'): trti = result.pop('trti') for sid, arr in result.items(): acc[sid][trti] = agg_probs(acc[sid].get(trti, 0), arr) return acc
[docs] def save_bin_edges(self): """ Save disagg-bins """ b = self.bin_edges T = len(self.trts) for sid in self.sitecol.sids: bins = disagg.get_bins(b, sid) shape = [len(bin) - 1 for bin in bins] + [T] shape_dic = dict(zip(BIN_NAMES, shape)) if sid == 0: logging.info('nbins=%s for site=#%d', shape_dic, sid) matrix_size = numpy.prod(shape) # 6D if matrix_size > 1E6: raise ValueError( 'The disaggregation matrix for site #%d is too large ' '(%d elements): fix the binning!' % (sid, matrix_size)) self.datastore['disagg-bins/mags'] = b[0] self.datastore['disagg-bins/dists'] = b[1] for sid in self.sitecol.sids: self.datastore['disagg-bins/lons/sid-%d' % sid] = b[2][sid] self.datastore['disagg-bins/lats/sid-%d' % sid] = b[3][sid] self.datastore['disagg-bins/eps'] = b[4] return shape_dic
[docs] def post_execute(self, results): """ Save all the results of the disaggregation. NB: the number of results to save is #sites * #rlzs * #disagg_poes * #IMTs. :param results: a dictionary sid -> trti -> disagg matrix """ T = len(self.trts) # build a dictionary sid -> 9D matrix of shape (T, ..., E, M, P) results = {sid: _trt_matrix(dic, T) for sid, dic in results.items()} # get the number of outputs shp = (self.N, len(self.poes_disagg), len(self.imts), self.Z) logging.info('Extracting and saving the PMFs for %d outputs ' '(N=%s, P=%d, M=%d, Z=%d)', numpy.prod(shp), *shp) self.save_disagg_results(results, trts=encode(self.trts))
[docs] def save_disagg_results(self, results, **attrs): """ Save the computed PMFs in the datastore :param results: an 8D-matrix of shape (T, .., E, M, P) :param attrs: dictionary of attributes to add to the dataset """ for sid, mat9 in results.items(): rlzs = self.rlzs[sid] many_rlzs = len(rlzs) > 1 for m, imt in enumerate(self.imts): if many_rlzs: # rescale the weights weights = numpy.array([self.ws[r][imt] for r in rlzs]) weights /= weights.sum() # normalize to 1 for p, poe in enumerate(self.poes_disagg): mat7 = mat9[..., m, p, :] for z in range(self.Z): mat6 = mat7[..., z] if mat6.any(): # nonzero self._save('disagg', sid, rlzs[z], poe, imt, mat6) if many_rlzs: # compute the mean matrices mean = numpy.average(mat7, -1, weights) if mean.any(): # nonzero self._save('disagg', sid, 'mean', poe, imt, mean) self.datastore.set_attrs('disagg', **attrs)
def _save(self, dskey, site_id, rlz_id, poe, imt_str, matrix6): disagg_outputs = self.oqparam.disagg_outputs lon = self.sitecol.lons[site_id] lat = self.sitecol.lats[site_id] try: rlz = 'rlz-%d-' % rlz_id except TypeError: # for the mean rlz = '' disp_name = dskey + '/' + DISAGG_RES_FMT % dict( rlz=rlz, imt=imt_str, sid='sid-%d' % site_id, poe='poe-%d' % self.poe_id[poe]) mag, dist, lonsd, latsd, eps = self.bin_edges lons, lats = lonsd[site_id], latsd[site_id] with self.monitor('extracting PMFs'): poe_agg = [] aggmatrix = agg_probs(*matrix6) for key, fn in disagg.pmf_map.items(): if not disagg_outputs or key in disagg_outputs: pmf = fn(matrix6 if key.endswith('TRT') else aggmatrix) self.datastore[disp_name + key] = pmf poe_agg.append(1. - numpy.prod(1. - pmf)) attrs = self.datastore.hdf5[disp_name].attrs attrs['site_id'] = site_id attrs['rlzi'] = rlz_id attrs['imt'] = imt_str try: attrs['iml'] = self.imldict[site_id, rlz_id, poe, imt_str] except KeyError: # for the mean pass attrs['mag_bin_edges'] = mag attrs['dist_bin_edges'] = dist attrs['lon_bin_edges'] = lons attrs['lat_bin_edges'] = lats attrs['eps_bin_edges'] = eps attrs['trt_bin_edges'] = self.trts attrs['location'] = (lon, lat) # sanity check: all poe_agg should be the same attrs['poe_agg'] = poe_agg if poe and site_id in self.ok_sites: attrs['poe'] = poe poe_agg = numpy.mean(attrs['poe_agg']) if abs(1 - poe_agg / poe) > .1: logging.warning( 'Site #%d: poe_agg=%s is quite different from the expected' ' poe=%s; perhaps the number of intensity measure' ' levels is too small?', site_id, poe_agg, poe)
[docs] def build_disagg_by_src(self, rlzs): logging.warning('Disaggregation by source is experimental') oq = self.oqparam groups = list(self.full_lt.get_rlzs_by_grp()) M = len(oq.imtls) P = len(self.poes_disagg) for (s, z), rlz in numpy.ndenumerate(rlzs): poes = numpy.zeros((M, P, len(groups))) iml2 = self.iml4[s, :, :, z] rlz = rlzs[s, z] for g, grp_id in enumerate(groups): pcurve = self.pgetter.get_pcurve(s, rlz, int(grp_id[4:])) if pcurve is None: continue for m, imt in enumerate(oq.imtls): xs = oq.imtls[imt] ys = pcurve.array[oq.imtls(imt), 0] poes[m, :, g] = numpy.interp(iml2[m], xs, ys) for m, imt in enumerate(oq.imtls): for p, poe in enumerate(self.poes_disagg): pref = ('iml-%s' % oq.iml_disagg[imt] if poe is None else 'poe-%s' % poe) name = 'disagg_by_src/%s-%s-sid-%s' % (pref, imt, s) if poes[m, p].sum(): # nonzero contribution poe_agg = 1 - numpy.prod(1 - poes[m, p]) if poe and abs(1 - poe_agg / poe) > .1: logging.warning( 'poe_agg=%s is quite different from ' 'the expected poe=%s', poe_agg, poe) self.datastore[name] = poes[m, p] self.datastore.set_attrs(name, poe_agg=poe_agg)