Source code for openquake.calculators.classical

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2020 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import os
import re
import time
import logging
import operator
from datetime import datetime
import numpy

from openquake.baselib import parallel, hdf5
from openquake.baselib.general import (
    AccumDict, block_splitter, groupby, humansize)
from openquake.hazardlib.contexts import ContextMaker, get_effect
from openquake.hazardlib.calc.filters import split_sources, getdefault
from openquake.hazardlib.calc.hazard_curve import classical
from openquake.hazardlib.probability_map import ProbabilityMap
from openquake.commonlib import calc, util, logs
from openquake.commonlib.source_reader import random_filtered_sources
from openquake.calculators import getters
from openquake.calculators import base

U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32
F64 = numpy.float64
TWO32 = 2 ** 32
grp_extreme_dt = numpy.dtype([('grp_id', U16), ('grp_trt', hdf5.vstr),
                             ('extreme_poe', F32)])

MAXMEMORY = '''Estimated upper memory limit per core:
%d sites x %d levels x %d gsims x %d src_multiplicity * 8 bytes = %s'''

TOOBIG = '''\
The calculation is too big and will likely fail:
num_sites = %d
num_levels = %d
num_gsims = %d
src_multiplicity = %d
The estimated memory per core is %s > 4 GB.
You should reduce one or more of the listed parameters.'''


[docs]def get_extreme_poe(array, imtls): """ :param array: array of shape (L, G) with L=num_levels, G=num_gsims :param imtls: DictArray imt -> levels :returns: the maximum PoE corresponding to the maximum level for IMTs and GSIMs """ return max(array[imtls(imt).stop - 1].max() for imt in imtls)
[docs]def classical_split_filter(srcs, srcfilter, gsims, params, monitor): """ Split the given sources, filter the subsources and the compute the PoEs. Yield back subtasks if the split sources contain more than maxweight ruptures. """ # first check if we are sampling the sources ss = int(os.environ.get('OQ_SAMPLE_SOURCES', 0)) if ss: splits, stime = split_sources(srcs) srcs = random_filtered_sources(splits, srcfilter, ss) yield classical(srcs, srcfilter, gsims, params, monitor) return # NB: splitting all the sources improves the distribution significantly, # compared to splitting only the big sources with monitor("splitting/filtering sources"): splits, _stime = split_sources(srcs) sources = list(srcfilter.filter(splits)) if not sources: yield {'pmap': {}} return maxw = params['max_weight'] N = len(srcfilter.sitecol.complete) def weight(src): n = 10 * numpy.sqrt(len(src.indices) / N) return src.weight * params['rescale_weight'] * n blocks = list(block_splitter(sources, maxw, weight)) subtasks = len(blocks) - 1 for block in blocks[:-1]: yield classical, block, srcfilter, gsims, params if monitor.calc_id and subtasks: msg = 'produced %d subtask(s) with mean weight %d' % ( subtasks, numpy.mean([b.weight for b in blocks[:-1]])) try: logs.dbcmd('log', monitor.calc_id, datetime.utcnow(), 'DEBUG', 'classical_split_filter#%d' % monitor.task_no, msg) except Exception: # a foreign key error in case of `oq run` is expected print(msg) yield classical(blocks[-1], srcfilter, gsims, params, monitor)
[docs]def preclassical(srcs, srcfilter, gsims, params, monitor): """ Split and prefilter the sources """ calc_times = AccumDict(accum=numpy.zeros(3, F32)) # nrups, nsites, time pmap = AccumDict(accum=0) with monitor("splitting/filtering sources"): splits, _stime = split_sources(srcs) totrups = 0 maxradius = 0 for src in splits: t0 = time.time() totrups += src.num_ruptures if srcfilter.get_close_sites(src) is None: continue if hasattr(src, 'radius'): # for point sources maxradius = max(maxradius, src.radius) dt = time.time() - t0 calc_times[src.source_id] += F32( [src.num_ruptures, src.nsites, dt]) for grp_id in src.grp_ids: pmap[grp_id] += 0 return dict(pmap=pmap, calc_times=calc_times, rup_data={'grp_id': []}, extra=dict(task_no=monitor.task_no, totrups=totrups, trt=src.tectonic_region_type, maxradius=maxradius))
[docs]@base.calculators.add('classical', 'ucerf_classical') class ClassicalCalculator(base.HazardCalculator): """ Classical PSHA calculator """ core_task = classical_split_filter accept_precalc = ['classical']
[docs] def agg_dicts(self, acc, dic): """ Aggregate dictionaries of hazard curves by updating the accumulator. :param acc: accumulator dictionary :param dic: dict with keys pmap, calc_times, rup_data """ # NB: dic should be a dictionary, but when the calculation dies # for an OOM it can become None, thus giving a very confusing error if dic is None: raise MemoryError('You ran out of memory!') if not dic['pmap']: return acc if self.oqparam.disagg_by_src: # store the pmaps for the given source for grp_id, pmap in dic['pmap'].items(): name = 'poes_by_src/%s/grp-%02d' % ( dic['extra']['source_id'], grp_id) self.datastore[name] = pmap trt = dic['extra'].pop('trt') self.maxradius = max(self.maxradius, dic['extra'].pop('maxradius')) with self.monitor('aggregate curves'): extra = dic['extra'] self.totrups += extra['totrups'] d = dic['calc_times'] # srcid -> eff_rups, eff_sites, dt self.calc_times += d srcids = set() eff_rups = 0 eff_sites = 0 for srcid, rec in d.items(): srcids.add(re.sub(r':\d+$', '', srcid)) eff_rups += rec[0] if rec[0]: eff_sites += rec[1] / rec[0] self.by_task[extra['task_no']] = ( eff_rups, eff_sites, sorted(srcids)) for grp_id, pmap in dic['pmap'].items(): if pmap: acc[grp_id] |= pmap acc.eff_ruptures[trt] += eff_rups rup_data = dic['rup_data'] nr = len(rup_data.get('grp_id', [])) if nr: for k in self.rparams: try: v = rup_data[k] except KeyError: if k == 'probs_occur': v = [numpy.zeros(0, F32)] * nr elif k.endswith('_'): v = numpy.ones((nr, self.N), F32) * numpy.nan else: v = numpy.ones(nr, F32) * numpy.nan if k == 'probs_occur': # variable lenght arrays self.datastore.hdf5.save_vlen('rup/' + k, v) continue if k == 'grp_id': # store indices to the grp_ids table v = U16([self.gidx[tuple(x)] for x in v]) hdf5.extend(self.datastore['rup/' + k], v) return acc
[docs] def acc0(self): """ Initial accumulator, a dict grp_id -> ProbabilityMap(L, G) """ zd = AccumDict() num_levels = len(self.oqparam.imtls.array) rparams = {'grp_id', 'occurrence_rate', 'weight', 'probs_occur', 'lon_', 'lat_', 'rrup_'} gsims_by_trt = self.full_lt.get_gsims_by_trt() n = len(self.full_lt.sm_rlzs) trts = list(self.full_lt.gsim_lt.values) for sm in self.full_lt.sm_rlzs: for grp_id in self.full_lt.grp_ids(sm.ordinal): trt = trts[grp_id // n] gsims = gsims_by_trt[trt] cm = ContextMaker(trt, gsims) rparams.update(cm.REQUIRES_RUPTURE_PARAMETERS) for dparam in cm.REQUIRES_DISTANCES: rparams.add(dparam + '_') zd[grp_id] = ProbabilityMap(num_levels, len(gsims)) zd.eff_ruptures = AccumDict(accum=0) # trt -> eff_ruptures if self.few_sites: self.rparams = sorted(rparams) for k in self.rparams: # variable length arrays if k == 'grp_id': self.datastore.create_dset('rup/' + k, U16) elif k == 'probs_occur': # vlen self.datastore.create_dset('rup/' + k, hdf5.vfloat32) elif k.endswith('_'): # array of shape (U, N) self.datastore.create_dset( 'rup/' + k, F32, shape=(None, self.N), compression='gzip') else: self.datastore.create_dset('rup/' + k, F32) else: self.rparams = {} self.by_task = {} # task_no => src_ids self.totrups = 0 # total number of ruptures before collapsing self.maxradius = 0 self.gidx = {tuple(grp_ids): i for i, grp_ids in enumerate(self.datastore['grp_ids'])} # estimate max memory per core max_num_gsims = max(len(gsims) for gsims in gsims_by_trt.values()) max_num_grp_ids = max(len(grp_ids) for grp_ids in self.gidx) pmapbytes = self.N * num_levels * max_num_gsims * max_num_grp_ids * 8 if pmapbytes > TWO32: logging.warning( TOOBIG % (self.N, num_levels, max_num_gsims, max_num_grp_ids, humansize(pmapbytes))) logging.info(MAXMEMORY % (self.N, num_levels, max_num_gsims, max_num_grp_ids, humansize(pmapbytes))) return zd
[docs] def execute(self): """ Run in parallel `core_task(sources, sitecol, monitor)`, by parallelizing on the sources according to their weight and tectonic region type. """ oq = self.oqparam if oq.hazard_calculation_id and not oq.compare_with_classical: with util.read(self.oqparam.hazard_calculation_id) as parent: self.full_lt = parent['full_lt'] self.calc_stats() # post-processing return {} mags = self.datastore['source_mags'] # by TRT if len(mags) == 0: # everything was discarded raise RuntimeError('All sources were discarded!?') gsims_by_trt = self.full_lt.get_gsims_by_trt() if oq.pointsource_distance is not None: for trt in gsims_by_trt: oq.pointsource_distance[trt] = getdefault( oq.pointsource_distance, trt) mags_by_trt = {} for trt in mags: mags_by_trt[trt] = mags[trt][()] imts_with_period = [imt for imt in oq.imtls if imt == 'PGA' or imt.startswith('SA')] imts_ok = len(imts_with_period) == len(oq.imtls) if (imts_ok and oq.pointsource_distance and oq.pointsource_distance.suggested()) or ( imts_ok and oq.minimum_intensity): aw, self.psd = get_effect( mags_by_trt, self.sitecol.one(), gsims_by_trt, oq) if len(vars(aw)) > 1: # more than _extra self.datastore['effect_by_mag_dst'] = aw elif oq.pointsource_distance: self.psd = oq.pointsource_distance.interp(mags_by_trt) else: self.psd = {} smap = parallel.Starmap(classical, h5=self.datastore.hdf5, num_cores=oq.num_cores) self.submit_tasks(smap) acc0 = self.acc0() # create the rup/ datasets BEFORE swmr_on() self.datastore.swmr_on() smap.h5 = self.datastore.hdf5 self.calc_times = AccumDict(accum=numpy.zeros(3, F32)) try: acc = smap.reduce(self.agg_dicts, acc0) self.store_rlz_info(acc.eff_ruptures) finally: with self.monitor('store source_info'): self.store_source_info(self.calc_times) if self.by_task: logging.info('Storing by_task information') num_tasks = max(self.by_task) + 1, er = self.datastore.create_dset('by_task/eff_ruptures', U32, num_tasks) es = self.datastore.create_dset('by_task/eff_sites', U32, num_tasks) si = self.datastore.create_dset('by_task/srcids', hdf5.vstr, num_tasks, fillvalue=None) for task_no, rec in self.by_task.items(): effrups, effsites, srcids = rec er[task_no] = effrups es[task_no] = effsites si[task_no] = ' '.join(srcids) self.by_task.clear() self.numrups = sum(arr[0] for arr in self.calc_times.values()) numsites = sum(arr[1] for arr in self.calc_times.values()) logging.info('Effective number of ruptures: {:_d}/{:_d}'.format( int(self.numrups), self.totrups)) logging.info('Effective number of sites per rupture: %d', numsites / self.numrups) if self.psd: psdist = max(max(self.psd[trt].values()) for trt in self.psd) if psdist != -1 and self.maxradius >= psdist / 2: logging.warning('The pointsource_distance of %d km is too ' 'small compared to a maxradius of %d km', psdist, self.maxradius) self.calc_times.clear() # save a bit of memory return acc
[docs] def submit_tasks(self, smap): """ Submit tasks to the passed Starmap """ oq = self.oqparam gsims_by_trt = self.full_lt.get_gsims_by_trt() src_groups = self.csm.src_groups def srcweight(src): trt = src.tectonic_region_type g = len(gsims_by_trt[trt]) return src.weight * g logging.info('Weighting the sources') totweight = sum(sum(srcweight(src) for src in sg) for sg in src_groups) C = oq.concurrent_tasks or 1 if oq.calculation_mode == 'preclassical': f1 = f2 = preclassical C *= 50 # use more tasks because there will be slow tasks elif oq.disagg_by_src or oq.is_ucerf() or oq.split_sources is False: # do not split the sources C *= 5 # use more tasks, especially in UCERF f1, f2 = classical, classical else: f1, f2 = classical, classical_split_filter min_weight = oq.min_weight * (10 if self.few_sites else 1) max_weight = max(min(totweight / C, oq.max_weight), min_weight) logging.info('tot_weight={:_d}, max_weight={:_d}'.format( int(totweight), int(max_weight))) param = dict( truncation_level=oq.truncation_level, imtls=oq.imtls, filter_distance=oq.filter_distance, reqv=oq.get_reqv(), maximum_distance=oq.maximum_distance, pointsource_distance=self.psd, point_rupture_bins=oq.point_rupture_bins, shift_hypo=oq.shift_hypo, max_weight=max_weight, collapse_level=oq.collapse_level, max_sites_disagg=oq.max_sites_disagg) srcfilter = self.src_filter(self.datastore.tempname) for sg in src_groups: gsims = gsims_by_trt[sg.trt] param['rescale_weight'] = len(gsims) if sg.atomic: # do not split atomic groups nb = 1 smap.submit((sg, srcfilter, gsims, param), f1) else: # regroup the sources in blocks blks = (groupby(sg, operator.attrgetter('source_id')).values() if oq.disagg_by_src else block_splitter(sg, totweight/C, srcweight)) blocks = list(blks) nb = len(blocks) for block in blocks: logging.debug('Sending %d source(s) with weight %d', len(block), sum(srcweight(src) for src in block)) smap.submit((block, srcfilter, gsims, param), f2) w = sum(srcweight(src) for src in sg) logging.info('TRT = %s', sg.trt) if oq.maximum_distance.magdist: it = sorted(oq.maximum_distance.magdist[sg.trt].items()) md = '%s->%d ... %s->%d' % (it[0] + it[-1]) else: md = oq.maximum_distance(sg.trt) logging.info('max_dist={}, gsims={}, weight={:_d}, blocks={}'. format(md, len(gsims), int(w), nb))
[docs] def save_hazard(self, acc, pmap_by_kind): """ Works by side effect by saving hcurves and hmaps on the datastore :param acc: ignored :param pmap_by_kind: a dictionary of ProbabilityMaps kind can be ('hcurves', 'mean'), ('hmaps', 'mean'), ... """ with self.monitor('saving statistics'): for kind in pmap_by_kind: # i.e. kind == 'hcurves-stats' pmaps = pmap_by_kind[kind] if kind in ('hmaps-rlzs', 'hmaps-stats'): # pmaps is a list of R pmaps dset = self.datastore.getitem(kind) for r, pmap in enumerate(pmaps): for s in pmap: dset[s, r] = pmap[s].array # shape (M, P) elif kind in ('hcurves-rlzs', 'hcurves-stats'): dset = self.datastore.getitem(kind) for r, pmap in enumerate(pmaps): for s in pmap: dset[s, r] = pmap[s].array[:, 0] # shape L self.datastore.flush()
[docs] def post_execute(self, pmap_by_grp_id): """ Collect the hazard curves by realization and export them. :param pmap_by_grp_id: a dictionary grp_id -> hazard curves """ oq = self.oqparam data = [] with self.monitor('saving probability maps'): for grp_id, pmap in pmap_by_grp_id.items(): if pmap: # pmap can be missing if the group is filtered away base.fix_ones(pmap) # avoid saving PoEs == 1 trt = self.full_lt.trt_by_grp[grp_id] key = 'poes/grp-%02d' % grp_id self.datastore[key] = pmap self.datastore.set_attrs(key, trt=trt) extreme = max( get_extreme_poe(pmap[sid].array, oq.imtls) for sid in pmap) data.append((grp_id, trt, extreme)) if oq.hazard_calculation_id is None and 'poes' in self.datastore: self.datastore['disagg_by_grp'] = numpy.array( sorted(data), grp_extreme_dt) self.calc_stats()
[docs] def calc_stats(self): oq = self.oqparam hstats = oq.hazard_stats() # initialize datasets N = len(self.sitecol.complete) P = len(oq.poes) M = len(oq.imtls) if oq.soil_intensities is not None: L = M * len(oq.soil_intensities) else: L = len(oq.imtls.array) R = len(self.realizations) S = len(hstats) if R > 1 and oq.individual_curves or not hstats: self.datastore.create_dset('hcurves-rlzs', F32, (N, R, L)) if oq.poes: self.datastore.create_dset('hmaps-rlzs', F32, (N, R, M, P)) if hstats: self.datastore.create_dset('hcurves-stats', F32, (N, S, L)) if oq.poes: self.datastore.create_dset('hmaps-stats', F32, (N, S, M, P)) ct = oq.concurrent_tasks or 1 logging.info('Building hazard statistics') weights = [rlz.weight for rlz in self.realizations] allargs = [ # this list is very fast to generate (getters.PmapGetter(self.datastore, weights, t.sids, oq.poes), N, hstats, oq.individual_curves, oq.max_sites_disagg, self.amplifier) for t in self.sitecol.split_in_tiles(ct)] if self.few_sites: dist = 'no' else: dist = None # parallelize as usual self.datastore.swmr_on() parallel.Starmap( build_hazard, allargs, distribute=dist, h5=self.datastore.hdf5 ).reduce(self.save_hazard)
[docs]@base.calculators.add('preclassical') class PreCalculator(ClassicalCalculator): """ Calculator to filter the sources and compute the number of effective ruptures """ core_task = preclassical
[docs]def build_hazard(pgetter, N, hstats, individual_curves, max_sites_disagg, amplifier, monitor): """ :param pgetter: an :class:`openquake.commonlib.getters.PmapGetter` :param N: the total number of sites :param hstats: a list of pairs (statname, statfunc) :param individual_curves: if True, also build the individual curves :param max_sites_disagg: if there are less sites than this, store rup info :param amplifier: instance of Amplifier or None :param monitor: instance of Monitor :returns: a dictionary kind -> ProbabilityMap The "kind" is a string of the form 'rlz-XXX' or 'mean' of 'quantile-XXX' used to specify the kind of output. """ with monitor('read PoEs'): pgetter.init() if amplifier: ampcode = pgetter.dstore['sitecol'].ampcode imtls, poes, weights = pgetter.imtls, pgetter.poes, pgetter.weights M = len(imtls) P = len(poes) L = len(imtls.array) if amplifier is None else len(amplifier.amplevels) * M R = len(weights) S = len(hstats) pmap_by_kind = {} if R > 1 and individual_curves or not hstats: pmap_by_kind['hcurves-rlzs'] = [ProbabilityMap(L) for r in range(R)] if hstats: pmap_by_kind['hcurves-stats'] = [ProbabilityMap(L) for r in range(S)] if poes: pmap_by_kind['hmaps-stats'] = [ ProbabilityMap(M, P) for r in range(S)] combine_mon = monitor('combine pmaps', measuremem=False) compute_mon = monitor('compute stats', measuremem=False) for sid in pgetter.sids: with combine_mon: pcurves = pgetter.get_pcurves(sid) if amplifier: pcurves = amplifier.amplify(ampcode[sid], pcurves) if sum(pc.array.sum() for pc in pcurves) == 0: # no data continue with compute_mon: if hstats: arr = numpy.array([pc.array for pc in pcurves]) for s, (statname, stat) in enumerate(hstats.items()): pc = getters.build_stat_curve(arr, imtls, stat, weights) pmap_by_kind['hcurves-stats'][s][sid] = pc if poes: hmap = calc.make_hmap(pc, pgetter.imtls, poes, sid) pmap_by_kind['hmaps-stats'][s].update(hmap) if R > 1 and individual_curves or not hstats: for pmap, pc in zip(pmap_by_kind['hcurves-rlzs'], pcurves): pmap[sid] = pc if poes: pmap_by_kind['hmaps-rlzs'] = [ calc.make_hmap(pc, imtls, poes, sid) for pc in pcurves] return pmap_by_kind