# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`AbrahamsonEtAl2014NSHMPUpper`
:class:`AbrahamsonEtAl2014NSHMPLower`
:class:`BooreEtAl2014NSHMPUpper`
:class:`BooreEtAl2014NSHMPLower`
:class:`CampbellBozorgnia2014NSHMPUpper`
:class:`CampbellBozorgnia2014NSHMPLower`
:class:`ChiouYoungs2014NSHMPUpper`
:class:`ChiouYoungs2014NSHMPLower`
:class:`Idriss2014NSHMPUpper`
:class:`Idriss2014NSHMPLower`
"""
import copy
import numpy as np
# NGA West 2 GMPEs
from openquake.hazardlib.gsim.abrahamson_2014 import AbrahamsonEtAl2014
from openquake.hazardlib.gsim.boore_2014 import BooreEtAl2014
from openquake.hazardlib.gsim.campbell_bozorgnia_2014 import \
CampbellBozorgnia2014
from openquake.hazardlib.gsim.chiou_youngs_2014 import ChiouYoungs2014
from openquake.hazardlib.gsim.idriss_2014 import Idriss2014
# Required for Atkinson and Macias (2009)
from openquake.hazardlib.gsim.atkinson_macias_2009 import AtkinsonMacias2009
from openquake.hazardlib.gsim.can15.sinter import SInterCan15Mid
[docs]class AtkinsonMacias2009NSHMP2014(AtkinsonMacias2009):
"""
Implements an adjusted version of the Atkinson and Macias (2009) GMPE.
The motion is scaled B/C conditions following the approach described in
Atkinson and Adams (2013) and implemented in
:mod:`openquake.hazardlib.gsim.can15.sinter`.
"""
#: Shear-wave velocity for reference soil conditions in [m s-1]
DEFINED_FOR_REFERENCE_VELOCITY = 760.
#: GMPE not tested against independent implementation so raise
#: not verified warning
non_verified = True
[docs] def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
# Get original mean and standard deviations
mean, stddevs = super().get_mean_and_stddevs(
sctx, rctx, dctx, imt, stddev_types)
cff = SInterCan15Mid.SITE_COEFFS[imt]
mean += np.log(cff['mf'])
return mean, stddevs
[docs]def nga_west2_epistemic_adjustment(magnitude, distance):
"""
Applies the "average" adjustment factor for epistemic uncertainty
as defined in Table 17 of Petersen et al., (2014)::
| R < 10. | 10.0 <= R < 30.0 | R >= 30.0
-----------------------------------------------------------
M < 6.0 | 0.37 | 0.22 | 0.22
6 <= M <7.0 | 0.25 | 0.23 | 0.23
M >= 7.0 | 0.40 | 0.36 | 0.33
"""
if magnitude < 6.0:
adjustment = 0.22 * np.ones_like(distance)
adjustment[distance < 10.0] = 0.37
elif magnitude >= 7.0:
adjustment = 0.36 * np.ones_like(distance)
adjustment[distance < 10.0] = 0.40
adjustment[distance >= 30.0] = 0.33
else:
adjustment = 0.23 * np.ones_like(distance)
adjustment[distance < 10.0] = 0.25
return adjustment
[docs]def get_mean_and_stddevs(self, sctx, rctx, dctx, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
cname = self.__class__.__name__
if cname.endswith('Upper'):
sgn = 1
elif cname.endswith('Lower'):
sgn = -1
elif cname.endswith('Mean'):
sgn = 0
else:
raise NameError(cname)
mean, stddevs = self.__class__.__base__.get_mean_and_stddevs(
self, sctx, rctx, dctx, imt, stddev_types)
# return mean, increased by the adjustment factor, and standard deviation
self.adjustment = nga_west2_epistemic_adjustment(rctx.mag, dctx.rrup)
return mean + sgn * self.adjustment, stddevs
DEFAULT_WEIGHTING = [(0.185, -1.), (0.63, 0.), (0.185, 1.)]
[docs]def get_weighted_poes(gsim, mean_std, imls, truncation_level,
weighting=DEFAULT_WEIGHTING):
"""
This function implements the NGA West 2 GMPE epistemic uncertainty
adjustment factor without re-calculating the actual GMPE each time.
:param gsim:
Instance of the GMPE
:param list weighting:
Weightings as a list of tuples of (weight, number standard deviations
of the epistemic uncertainty adjustment)
"""
mean = np.array(mean_std[0]) # make a copy
output = np.zeros([len(mean), len(imls)])
for w, s in weighting:
mean_std[0] = mean + s * gsim.adjustment
output += gsim.__class__.__base__.get_poes(
gsim, mean_std, imls, truncation_level) * w
return output
[docs]class AbrahamsonEtAl2014NSHMPUpper(AbrahamsonEtAl2014):
"""
Implements the positive NSHMP adjustment factor for the Abrahamson et al.
(2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class AbrahamsonEtAl2014NSHMPLower(AbrahamsonEtAl2014):
"""
Implements the negative NSHMP adjustment factor for the Abrahamson et al.
(2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class AbrahamsonEtAl2014NSHMPMean(AbrahamsonEtAl2014):
"""
Implements the Abrahamson et al (2014) GMPE for application to the
weighted mean case
"""
get_mean_and_stddevs = get_mean_and_stddevs
get_poes = get_weighted_poes
[docs]class BooreEtAl2014NSHMPUpper(BooreEtAl2014):
"""
Implements the positive NSHMP adjustment factor for the Boore et al.
(2014) NGA West 2 GMPE
"""
# Originally Boore et al. (2014) requires only Rjb, but the epistemic
# adjustment factors are given in terms of Rrup, so both are required here
REQUIRES_DISTANCES = set(("rjb", "rrup"))
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class BooreEtAl2014NSHMPLower(BooreEtAl2014):
"""
Implements the negative NSHMP adjustment factor for the Boore et al.
(2014) NGA West 2 GMPE
"""
# See similar comment above
REQUIRES_DISTANCES = set(("rjb", "rrup"))
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class BooreEtAl2014NSHMPMean(BooreEtAl2014):
"""
Implements the Boore et al (2014) GMPE for application to the
weighted mean case
"""
# See similar comment above
REQUIRES_DISTANCES = set(("rjb", "rrup"))
get_mean_and_stddevs = get_mean_and_stddevs
get_poes = get_weighted_poes
[docs]class CampbellBozorgnia2014NSHMPUpper(CampbellBozorgnia2014):
"""
Implements the positive NSHMP adjustment factor for the Campbell and
Bozorgnia (2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class CampbellBozorgnia2014NSHMPLower(CampbellBozorgnia2014):
"""
Implements the negative NSHMP adjustment factor for the Campbell and
Bozorgnia (2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class CampbellBozorgnia2014NSHMPMean(CampbellBozorgnia2014):
"""
Implements the Campbell & Bozorgnia (2014) GMPE for application to the
weighted mean case
"""
get_mean_and_stddevs = get_mean_and_stddevs
get_poes = get_weighted_poes
[docs]class ChiouYoungs2014NSHMPUpper(ChiouYoungs2014):
"""
Implements the positive NSHMP adjustment factor for the Chiou & Youngs
(2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class ChiouYoungs2014NSHMPLower(ChiouYoungs2014):
"""
Implements the negative NSHMP adjustment factor for the Chiou & Youngs
(2014) NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class ChiouYoungs2014NSHMPMean(ChiouYoungs2014):
"""
Implements the Chiou & Youngs (2014) GMPE for application to the
weighted mean case
"""
get_mean_and_stddevs = get_mean_and_stddevs
get_poes = get_weighted_poes
[docs]class Idriss2014NSHMPUpper(Idriss2014):
"""
Implements the positive NSHMP adjustment factor for the Idriss (2014)
NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class Idriss2014NSHMPLower(Idriss2014):
"""
Implements the negative NSHMP adjustment factor for the Idriss (2014)
NGA West 2 GMPE
"""
get_mean_and_stddevs = get_mean_and_stddevs
[docs]class Idriss2014NSHMPMean(Idriss2014):
"""
Implements the Idriss (2014) GMPE for application to the
weighted mean case
"""
get_mean_and_stddevs = get_mean_and_stddevs
get_poes = get_weighted_poes