# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2018-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import abc
import sys
import time
import numpy
from openquake.baselib.general import AccumDict
from openquake.baselib.performance import Monitor
from openquake.hazardlib import imt as imt_module
from openquake.hazardlib.calc.filters import IntegrationDistance
from openquake.hazardlib.probability_map import ProbabilityMap
from openquake.hazardlib.geo.surface import PlanarSurface
F32 = numpy.float32
KNOWN_DISTANCES = frozenset(
'rrup rx ry0 rjb rhypo repi rcdpp azimuth azimuth_cp rvolc'.split())
def _update(pmap, pm, src, src_mutex, rup_mutex):
if not rup_mutex:
pm = ~pm
if not pm:
return
if src_mutex:
pm *= src.mutex_weight
for grp_id in src.src_group_ids:
if src_mutex:
pmap[grp_id] += pm
else:
pmap[grp_id] |= pm
def get_distances(rupture, mesh, param):
"""
:param rupture: a rupture
:param mesh: a mesh of points or a site collection
:param param: the kind of distance to compute (default rjb)
:returns: an array of distances from the given mesh
"""
if param == 'rrup':
dist = rupture.surface.get_min_distance(mesh)
elif param == 'rx':
dist = rupture.surface.get_rx_distance(mesh)
elif param == 'ry0':
dist = rupture.surface.get_ry0_distance(mesh)
elif param == 'rjb':
dist = rupture.surface.get_joyner_boore_distance(mesh)
elif param == 'rhypo':
dist = rupture.hypocenter.distance_to_mesh(mesh)
elif param == 'repi':
dist = rupture.hypocenter.distance_to_mesh(mesh, with_depths=False)
elif param == 'rcdpp':
dist = rupture.get_cdppvalue(mesh)
elif param == 'azimuth':
dist = rupture.surface.get_azimuth(mesh)
elif param == 'azimuth_cp':
dist = rupture.surface.get_azimuth_of_closest_point(mesh)
elif param == "rvolc":
# Volcanic distance not yet supported, defaulting to zero
dist = numpy.zeros_like(mesh.lons)
else:
raise ValueError('Unknown distance measure %r' % param)
dist.flags.writeable = False
return dist
class FarAwayRupture(Exception):
"""Raised if the rupture is outside the maximum distance for all sites"""
def get_num_distances(gsims):
"""
:returns: the number of distances required for the given GSIMs
"""
dists = set()
for gsim in gsims:
dists.update(gsim.REQUIRES_DISTANCES)
return len(dists)
class RupData(object):
"""
A class to collect rupture information into an array
"""
def __init__(self, cmaker):
self.cmaker = cmaker
self.data = AccumDict(accum=[])
def from_srcs(self, srcs, sites): # used in disagg.disaggregation
"""
:returns: param -> array
"""
for src in srcs:
for rup in src.iter_ruptures():
self.cmaker.add_rup_params(rup)
self.add(rup, src.id, sites)
return {k: numpy.array(v) for k, v in self.data.items()}
def add(self, rup, src_id, sctx, dctx=None):
rate = rup.occurrence_rate
if numpy.isnan(rate): # for nonparametric ruptures
probs_occur = rup.probs_occur
else:
probs_occur = numpy.zeros(0, numpy.float64)
self.data['srcidx'].append(src_id or 0)
self.data['occurrence_rate'].append(rate)
self.data['weight'].append(rup.weight or numpy.nan)
self.data['probs_occur'].append(probs_occur)
for rup_param in self.cmaker.REQUIRES_RUPTURE_PARAMETERS:
self.data[rup_param].append(getattr(rup, rup_param))
self.data['sid_'].append(numpy.int16(sctx.sids))
for dst_param in self.cmaker.REQUIRES_DISTANCES:
if dctx is None: # compute the distances
dists = get_distances(rup, sctx, dst_param)
else: # reuse already computed distances
dists = getattr(dctx, dst_param)
self.data[dst_param + '_'].append(F32(dists))
closest = rup.surface.get_closest_points(sctx)
self.data['lon_'].append(F32(closest.lons))
self.data['lat_'].append(F32(closest.lats))
class ContextMaker(object):
"""
A class to manage the creation of contexts for distances, sites, rupture.
"""
REQUIRES = ['DISTANCES', 'SITES_PARAMETERS', 'RUPTURE_PARAMETERS']
def __init__(self, trt, gsims, param=None, monitor=Monitor()):
param = param or {}
self.max_sites_disagg = param.get('max_sites_disagg', 10)
self.trt = trt
self.gsims = gsims
self.maximum_distance = (
param.get('maximum_distance') or IntegrationDistance({}))
self.trunclevel = param.get('truncation_level')
self.pointsource_distance = param.get('pointsource_distance', {})
for req in self.REQUIRES:
reqset = set()
for gsim in gsims:
reqset.update(getattr(gsim, 'REQUIRES_' + req))
setattr(self, 'REQUIRES_' + req, reqset)
filter_distance = param.get('filter_distance')
if filter_distance is None:
if 'rrup' in self.REQUIRES_DISTANCES:
filter_distance = 'rrup'
elif 'rjb' in self.REQUIRES_DISTANCES:
filter_distance = 'rjb'
else:
filter_distance = 'rrup'
self.filter_distance = filter_distance
self.imtls = param.get('imtls', {})
self.imts = [imt_module.from_string(imt) for imt in self.imtls]
self.reqv = param.get('reqv')
self.REQUIRES_DISTANCES.add(self.filter_distance)
if self.reqv is not None:
self.REQUIRES_DISTANCES.add('repi')
if hasattr(gsims, 'items'):
# gsims is actually a dict rlzs_by_gsim
# since the ContextMaker must be used on ruptures with the
# same TRT, given a realization there is a single gsim
self.gsim_by_rlzi = {}
for gsim, rlzis in gsims.items():
for rlzi in rlzis:
self.gsim_by_rlzi[rlzi] = gsim
self.ctx_mon = monitor('make_contexts', measuremem=False)
self.poe_mon = monitor('get_poes', measuremem=False)
self.gmf_mon = monitor('computing mean_std', measuremem=False)
def filter(self, sites, rupture):
"""
Filter the site collection with respect to the rupture.
:param sites:
Instance of :class:`openquake.hazardlib.site.SiteCollection`.
:param rupture:
Instance of
:class:`openquake.hazardlib.source.rupture.BaseRupture`
:returns:
(filtered sites, distance context)
"""
distances = get_distances(rupture, sites, self.filter_distance)
if self.maximum_distance:
mask = distances <= self.maximum_distance(
rupture.tectonic_region_type, rupture.mag)
if mask.any():
sites, distances = sites.filter(mask), distances[mask]
else:
raise FarAwayRupture(
'%d: %d km' % (rupture.rup_id, distances.min()))
return sites, DistancesContext([(self.filter_distance, distances)])
def add_rup_params(self, rupture):
"""
Add .REQUIRES_RUPTURE_PARAMETERS to the rupture
"""
for param in self.REQUIRES_RUPTURE_PARAMETERS:
if param == 'mag':
value = rupture.mag
elif param == 'strike':
value = rupture.surface.get_strike()
elif param == 'dip':
value = rupture.surface.get_dip()
elif param == 'rake':
value = rupture.rake
elif param == 'ztor':
value = rupture.surface.get_top_edge_depth()
elif param == 'hypo_lon':
value = rupture.hypocenter.longitude
elif param == 'hypo_lat':
value = rupture.hypocenter.latitude
elif param == 'hypo_depth':
value = rupture.hypocenter.depth
elif param == 'width':
value = rupture.surface.get_width()
else:
raise ValueError('%s requires unknown rupture parameter %r' %
(type(self).__name__, param))
setattr(rupture, param, value)
def make_contexts(self, sites, rupture):
"""
Filter the site collection with respect to the rupture and
create context objects.
:param sites:
Instance of :class:`openquake.hazardlib.site.SiteCollection`.
:param rupture:
Instance of
:class:`openquake.hazardlib.source.rupture.BaseRupture`
:returns:
Tuple of two items: sites and distances context.
:raises ValueError:
If any of declared required parameters (site, rupture and
distance parameters) is unknown.
"""
sites, dctx = self.filter(sites, rupture)
for param in self.REQUIRES_DISTANCES - set([self.filter_distance]):
distances = get_distances(rupture, sites, param)
setattr(dctx, param, distances)
reqv_obj = (self.reqv.get(rupture.tectonic_region_type)
if self.reqv else None)
if reqv_obj and isinstance(rupture.surface, PlanarSurface):
reqv = reqv_obj.get(dctx.repi, rupture.mag)
if 'rjb' in self.REQUIRES_DISTANCES:
dctx.rjb = reqv
if 'rrup' in self.REQUIRES_DISTANCES:
reqv_rup = numpy.sqrt(reqv**2 + rupture.hypocenter.depth**2)
dctx.rrup = reqv_rup
self.add_rup_params(rupture)
return sites, dctx
def get_pmap(self, src, s_sites, rup_indep=True):
"""
:param src: a hazardlib source
:param s_sites: the sites affected by it
:returns: the probability map generated by the source
"""
imts = self.imts
sitecol = s_sites.complete
N, M = len(sitecol), len(imts)
fewsites = N <= self.max_sites_disagg
rupdata = RupData(self)
nrups, nsites = 0, 0
L, G = len(self.imtls.array), len(self.gsims)
poemap = ProbabilityMap(L, G)
for rup, sites in self._gen_rup_sites(src, s_sites):
try:
with self.ctx_mon:
sctx, dctx = self.make_contexts(sites, rup)
except FarAwayRupture:
continue
with self.gmf_mon:
mean_std = numpy.zeros((G, 2, len(sctx), M))
for i, gsim in enumerate(self.gsims):
dctx_ = dctx.roundup(gsim.minimum_distance)
mean_std[i] = gsim.get_mean_std(sctx, rup, dctx_, imts)
with self.poe_mon:
for sid, pne in self._make_pnes(rup, sctx.sids, mean_std):
pcurve = poemap.setdefault(sid, rup_indep)
if rup_indep:
pcurve.array *= pne
else:
pcurve.array += (1.-pne) * rup.weight
nrups += 1
nsites += len(sctx)
if fewsites: # store rupdata
rupdata.add(rup, src.id, sctx, dctx)
poemap.nrups = nrups
poemap.nsites = nsites
poemap.data = rupdata.data
return poemap
def _gen_rup_sites(self, src, sites):
# implements the pointsource_distance feature
pdist = self.pointsource_distance.get(src.tectonic_region_type)
if hasattr(src, 'location') and pdist and src.count_nphc() > 1:
close_sites, far_sites = sites.split(src.location, pdist)
if close_sites is None: # all is far
for rup in src.iter_ruptures(False, False):
yield rup, far_sites
elif far_sites is None: # all is close
for rup in src.iter_ruptures(True, True):
yield rup, close_sites
else:
for rup in src.iter_ruptures(True, True):
yield rup, close_sites
for rup in src.iter_ruptures(False, False):
yield rup, far_sites
else:
for rup in src.iter_ruptures():
yield rup, sites
def get_pmap_by_grp(self, src_sites, src_mutex=False, rup_mutex=False):
"""
:param src_sites: an iterator of pairs (source, sites)
:param src_mutex: True if the sources are mutually exclusive
:param rup_mutex: True if the ruptures are mutually exclusive
:return: dictionaries pmap, rdata, calc_times
"""
imtls = self.imtls
L, G = len(imtls.array), len(self.gsims)
pmap = AccumDict(accum=ProbabilityMap(L, G))
gids = []
rup_data = AccumDict(accum=[])
# AccumDict of arrays with 3 elements nrups, nsites, calc_time
calc_times = AccumDict(accum=numpy.zeros(3, numpy.float32))
it = iter(src_sites)
while True:
t0 = time.time()
try:
src, s_sites = next(it)
poemap = self.get_pmap(src, s_sites, not rup_mutex)
_update(pmap, poemap, src, src_mutex, rup_mutex)
except StopIteration:
break
except Exception as err:
etype, err, tb = sys.exc_info()
msg = '%s (source id=%s)' % (str(err), src.source_id)
raise etype(msg).with_traceback(tb)
if len(poemap.data):
nr = len(poemap.data['sid_'])
for gid in src.src_group_ids:
gids.extend([gid] * nr)
for k, v in poemap.data.items():
rup_data[k].extend(v)
calc_times[src.id] += numpy.array(
[poemap.nrups, poemap.nsites, time.time() - t0])
rdata = {k: numpy.array(v) for k, v in rup_data.items()}
rdata['grp_id'] = numpy.uint16(gids)
return pmap, rdata, calc_times
# NB: it is important for this to be fast since it is inside an inner loop
def _make_pnes(self, rupture, sids, mean_std):
imtls = self.imtls
nsites = len(sids)
pne_array = numpy.zeros((nsites, len(imtls.array), len(self.gsims)))
for i, gsim in enumerate(self.gsims):
for m, imt in enumerate(imtls):
slc = imtls(imt)
if hasattr(gsim, 'weight') and gsim.weight[imt] == 0:
# set by the engine when parsing the gsim logictree;
# when 0 ignore the gsim: see _build_trts_branches
pno = numpy.ones((nsites, slc.stop - slc.start))
else:
poes = gsim.get_poes(
mean_std[i, :, :, m], imtls[imt], self.trunclevel)
pno = rupture.get_probability_no_exceedance(poes)
pne_array[:, slc, i] = pno
return zip(sids, pne_array)
class BaseContext(metaclass=abc.ABCMeta):
"""
Base class for context object.
"""
def __eq__(self, other):
"""
Return True if ``other`` has same attributes with same values.
"""
if isinstance(other, self.__class__):
if self._slots_ == other._slots_:
oks = []
for s in self._slots_:
a, b = getattr(self, s, None), getattr(other, s, None)
if a is None and b is None:
ok = True
elif a is None and b is not None:
ok = False
elif a is not None and b is None:
ok = False
elif hasattr(a, 'shape') and hasattr(b, 'shape'):
if a.shape == b.shape:
ok = numpy.allclose(a, b)
else:
ok = False
else:
ok = a == b
oks.append(ok)
return numpy.all(oks)
return False
# mock of a site collection used in the tests and in the SMTK
class SitesContext(BaseContext):
"""
Sites calculation context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant features of the sites collection.
Every GSIM class is required to declare what :attr:`sites parameters
<GroundShakingIntensityModel.REQUIRES_SITES_PARAMETERS>` does it need.
Only those required parameters are made available in a result context
object.
"""
# _slots_ is used in hazardlib check_gsim and in the SMTK
def __init__(self, slots='vs30 vs30measured z1pt0 z2pt5'.split(),
sitecol=None):
self._slots_ = slots
if sitecol is not None:
self.sids = sitecol.sids
for slot in slots:
setattr(self, slot, getattr(sitecol, slot))
class DistancesContext(BaseContext):
"""
Distances context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant distances between sites from the collection
and the rupture. Every GSIM class is required to declare what
:attr:`distance measures <GroundShakingIntensityModel.REQUIRES_DISTANCES>`
does it need. Only those required values are calculated and made available
in a result context object.
"""
_slots_ = ('rrup', 'rx', 'rjb', 'rhypo', 'repi', 'ry0', 'rcdpp',
'azimuth', 'hanging_wall', 'rvolc')
def __init__(self, param_dist_pairs=()):
for param, dist in param_dist_pairs:
setattr(self, param, dist)
def roundup(self, minimum_distance):
"""
If the minimum_distance is nonzero, returns a copy of the
DistancesContext with updated distances, i.e. the ones below
minimum_distance are rounded up to the minimum_distance. Otherwise,
returns the original DistancesContext unchanged.
"""
if not minimum_distance:
return self
ctx = DistancesContext()
for dist, array in vars(self).items():
small_distances = array < minimum_distance
if small_distances.any():
array = numpy.array(array) # make a copy first
array[small_distances] = minimum_distance
array.flags.writeable = False
setattr(ctx, dist, array)
return ctx
# mock of a rupture used in the tests and in the SMTK
class RuptureContext(BaseContext):
"""
Rupture calculation context for ground shaking intensity models.
Instances of this class are passed into
:meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are
intended to represent relevant features of a single rupture. Every
GSIM class is required to declare what :attr:`rupture parameters
<GroundShakingIntensityModel.REQUIRES_RUPTURE_PARAMETERS>` does it need.
Only those required parameters are made available in a result context
object.
"""
_slots_ = (
'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat',
'hypo_depth', 'width', 'hypo_loc')
temporal_occurrence_model = None # to be set
def __init__(self, param_pairs=()):
for param, value in param_pairs:
setattr(self, param, value)
def get_probability_no_exceedance(self, poes):
"""
Compute and return the probability that in the time span for which the
rupture is defined, the rupture itself never generates a ground motion
value higher than a given level at a given site.
Such calculation is performed starting from the conditional probability
that an occurrence of the current rupture is producing a ground motion
value higher than the level of interest at the site of interest.
The actual formula used for such calculation depends on the temporal
occurrence model the rupture is associated with.
The calculation can be performed for multiple intensity measure levels
and multiple sites in a vectorized fashion.
:param poes:
2D numpy array containing conditional probabilities the the a
rupture occurrence causes a ground shaking value exceeding a
ground motion level at a site. First dimension represent sites,
second dimension intensity measure levels. ``poes`` can be obtained
calling the :meth:`method
<openquake.hazardlib.gsim.base.GroundShakingIntensityModel.get_poes>
"""
if numpy.isnan(self.occurrence_rate): # nonparametric rupture
# Uses the formula
#
# ∑ p(k|T) * p(X<x|rup)^k
#
# where `p(k|T)` is the probability that the rupture occurs k times
# in the time span `T`, `p(X<x|rup)` is the probability that a
# rupture occurrence does not cause a ground motion exceedance, and
# thesummation `∑` is done over the number of occurrences `k`.
#
# `p(k|T)` is given by the attribute probs_occur and
# `p(X<x|rup)` is computed as ``1 - poes``.
# Converting from 1d to 2d
if len(poes.shape) == 1:
poes = numpy.reshape(poes, (-1, len(poes)))
p_kT = self.probs_occur
prob_no_exceed = numpy.array(
[v * ((1 - poes) ** i) for i, v in enumerate(p_kT)])
prob_no_exceed = numpy.sum(prob_no_exceed, axis=0)
if isinstance(prob_no_exceed, numpy.ndarray):
prob_no_exceed[prob_no_exceed > 1.] = 1. # sanity check
prob_no_exceed[poes == 0.] = 1. # avoid numeric issues
return prob_no_exceed
# parametric rupture
tom = self.temporal_occurrence_model
return tom.get_probability_no_exceedance(self.occurrence_rate, poes)