# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
:mod:`openquake.hazardlib.calc.disagg` contains
:func:`disaggregation` as well as several aggregation functions for
extracting a specific PMF from the result of :func:`disaggregation`.
"""
import warnings
import operator
import numpy
import scipy.stats
from openquake.hazardlib import pmf, contexts
from openquake.baselib import hdf5, performance
from openquake.baselib.general import pack, groupby
from openquake.hazardlib.calc import filters
from openquake.hazardlib.geo.geodetic import npoints_between
from openquake.hazardlib.geo.utils import get_longitudinal_extent
from openquake.hazardlib.geo.utils import cross_idl
from openquake.hazardlib.site import SiteCollection
from openquake.hazardlib.gsim.base import ContextMaker
def _eps3(truncation_level, n_epsilons):
# NB: instantiating truncnorm is slow and calls the infamous "doccer"
tn = scipy.stats.truncnorm(-truncation_level, truncation_level)
eps = numpy.linspace(-truncation_level, truncation_level, n_epsilons + 1)
eps_bands = tn.cdf(eps[1:]) - tn.cdf(eps[:-1])
return tn, eps, eps_bands
def _site_indices(sids_by_rup, N):
# an array of indices of shape (N, U)
U = len(sids_by_rup)
mat = -numpy.ones((N, U), numpy.int16)
for ridx, sids in enumerate(sids_by_rup):
for sidx, sid in enumerate(sids):
mat[sid, ridx] = sidx
return mat
def _disaggregate(cmaker, sitecol, rupdata, indices, iml2, eps3,
pne_mon=performance.Monitor(),
gmf_mon=performance.Monitor()):
# disaggregate (separate) PoE in different contributions
# returns AccumDict with keys (poe, imt) and mags, dists, lons, lats
[sid] = sitecol.sids
acc = dict(pnes=[], mags=[], dists=[], lons=[], lats=[])
try:
gsim = cmaker.gsim_by_rlzi[iml2.rlzi]
except KeyError:
return pack(acc, 'mags dists lons lats pnes'.split())
maxdist = cmaker.maximum_distance(cmaker.trt)
fildist = rupdata[cmaker.filter_distance + '_']
for ridx, sidx in enumerate(indices):
if sidx == -1: # no contribution for this site
continue
dist = fildist[ridx][sidx]
if dist >= maxdist:
continue
elif gsim.minimum_distance and dist < gsim.minimum_distance:
dist = gsim.minimum_distance
rctx = contexts.RuptureContext(
(par, val[ridx]) for par, val in rupdata.items())
dctx = contexts.DistancesContext(
(param, getattr(rctx, param + '_')[[sidx]])
for param in cmaker.REQUIRES_DISTANCES).roundup(
gsim.minimum_distance)
acc['mags'].append(rctx.mag)
acc['lons'].append(rctx.lon_[sidx])
acc['lats'].append(rctx.lat_[sidx])
acc['dists'].append(dist)
with gmf_mon:
mean_std = gsim.get_mean_std(sitecol, rctx, dctx, iml2.imts)
with pne_mon:
iml = gsim.to_distribution_values(iml2)
pne = _disaggregate_pne(rctx, mean_std, iml, *eps3)
acc['pnes'].append(pne)
return pack(acc, 'mags dists lons lats pnes'.split())
def _disaggregate_pne(rupture, mean_std, imls, truncnorm, epsilons, eps_bands):
"""
Disaggregate (separate) PoE of ``iml`` in different contributions
each coming from ``epsilons`` distribution bins.
:returns:
Contribution to probability of exceedance of ``iml`` coming
from different sigma bands in the form of a 2D numpy array of
probabilities with shape (n_sites, n_epsilons)
"""
n_epsilons = len(epsilons) - 1
poes = numpy.zeros(imls.shape + (n_epsilons,))
for (m, p), iml in numpy.ndenumerate(imls):
# compute iml value with respect to standard (mean=0, std=1)
# normal distributions
[lvl] = (iml - mean_std[0, :, m]) / mean_std[1, :, m]
# take the minimum epsilon larger than standard_iml
bin = numpy.searchsorted(epsilons, lvl)
if bin == 0:
poes[m, p] = eps_bands
elif bin > n_epsilons:
poes[m, p] = numpy.zeros(n_epsilons)
else:
# for other cases (when ``lvl`` falls somewhere in the
# histogram):
poes[m, p] = numpy.concatenate([
# take zeros for bins that are on the left hand side
# from the bin ``lvl`` falls into,
numpy.zeros(bin - 1),
# ... area of the portion of the bin containing ``lvl``
# (the portion is limited on the left hand side by
# ``lvl`` and on the right hand side by the bin edge),
[truncnorm.sf(lvl) - eps_bands[bin:].sum()],
# ... and all bins on the right go unchanged.
eps_bands[bin:]])
return rupture.get_probability_no_exceedance(poes)
[docs]def lon_lat_bins(bb, coord_bin_width):
"""
Define lon, lat bin edges for disaggregation histograms.
:param bb: bounding box west, south, east, north
:param coord_bin_width: bin width
"""
west, south, east, north = bb
west = numpy.floor(west / coord_bin_width) * coord_bin_width
east = numpy.ceil(east / coord_bin_width) * coord_bin_width
lon_extent = get_longitudinal_extent(west, east)
lon_bins, _, _ = npoints_between(
west, 0, 0, east, 0, 0,
numpy.round(lon_extent / coord_bin_width + 1))
lat_bins = coord_bin_width * numpy.arange(
int(numpy.floor(south / coord_bin_width)),
int(numpy.ceil(north / coord_bin_width) + 1))
if cross_idl(*lon_bins):
lon_bins %= 360
return lon_bins, lat_bins
[docs]def get_bins(bin_edges, sid):
"""
:returns: mags, dists, lons, lats, eps for the given sid
"""
mag_bins, dist_bins, lon_bins, lat_bins, eps_bins = bin_edges
return mag_bins, dist_bins, lon_bins[sid], lat_bins[sid], eps_bins
# this is fast
def _build_disagg_matrix(bdata, bins):
"""
:param bdata: a dictionary of probabilities of no exceedence
:param bins: bin edges
:param mon: a Monitor instance
:returns: a 7D-matrix of shape (#magbins, #distbins, #lonbins,
#latbins, #imts, #poes, #epsbins)
"""
mag_bins, dist_bins, lon_bins, lat_bins, eps_bins = bins
dim1, dim2, dim3, dim4, dim5 = shape = [len(b)-1 for b in bins]
# find bin indexes of rupture attributes; bins are assumed closed
# on the lower bound, and open on the upper bound, that is [ )
# longitude values need an ad-hoc method to take into account
# the 'international date line' issue
# the 'minus 1' is needed because the digitize method returns the
# index of the upper bound of the bin
mags_idx = numpy.digitize(bdata.mags+pmf.PRECISION, mag_bins) - 1
dists_idx = numpy.digitize(bdata.dists, dist_bins) - 1
lons_idx = _digitize_lons(bdata.lons, lon_bins)
lats_idx = numpy.digitize(bdata.lats, lat_bins) - 1
# because of the way numpy.digitize works, values equal to the last bin
# edge are associated to an index equal to len(bins) which is not a
# valid index for the disaggregation matrix. Such values are assumed
# to fall in the last bin
mags_idx[mags_idx == dim1] = dim1 - 1
dists_idx[dists_idx == dim2] = dim2 - 1
lons_idx[lons_idx == dim3] = dim3 - 1
lats_idx[lats_idx == dim4] = dim4 - 1
U, M, P, E = bdata.pnes.shape
mat7D = numpy.ones(shape[:-1] + [M, P, E])
for i_mag, i_dist, i_lon, i_lat, pne in zip(
mags_idx, dists_idx, lons_idx, lats_idx, bdata.pnes):
mat7D[i_mag, i_dist, i_lon, i_lat] *= pne
return 1. - mat7D
# called by the engine
[docs]def build_matrices(rupdata, sitecol, cmaker, iml2s,
num_epsilon_bins, bin_edges,
pne_mon, mat_mon, gmf_mon):
"""
:yield: (sid, {poe, imt, rlz: matrix})
"""
if len(sitecol) >= 32768:
raise ValueError('You can disaggregate at max 32,768 sites')
indices = _site_indices(rupdata['sid_'], len(sitecol))
eps3 = _eps3(cmaker.trunclevel, num_epsilon_bins) # this is slow
for sid, iml2 in zip(sitecol.sids, iml2s):
singlesitecol = sitecol.filtered([sid])
bins = get_bins(bin_edges, sid)
bdata = _disaggregate(cmaker, singlesitecol, rupdata,
indices[sid], iml2, eps3, pne_mon, gmf_mon)
if bdata.pnes.sum():
with mat_mon:
mat = _build_disagg_matrix(bdata, bins)
if mat.any(): # nonzero
yield sid, mat
def _digitize_lons(lons, lon_bins):
"""
Return indices of the bins to which each value in lons belongs.
Takes into account the case in which longitude values cross the
international date line.
:parameter lons:
An instance of `numpy.ndarray`.
:parameter lons_bins:
An instance of `numpy.ndarray`.
"""
if cross_idl(lon_bins[0], lon_bins[-1]):
idx = numpy.zeros_like(lons, dtype=numpy.int)
for i_lon in range(len(lon_bins) - 1):
extents = get_longitudinal_extent(lons, lon_bins[i_lon + 1])
lon_idx = extents > 0
if i_lon != 0:
extents = get_longitudinal_extent(lon_bins[i_lon], lons)
lon_idx &= extents >= 0
idx[lon_idx] = i_lon
return numpy.array(idx)
else:
return numpy.digitize(lons, lon_bins) - 1
# this is used in the hazardlib tests, not in the engine
[docs]def disaggregation(
sources, site, imt, iml, gsim_by_trt, truncation_level,
n_epsilons, mag_bin_width, dist_bin_width, coord_bin_width,
source_filter=filters.nofilter, filter_distance='rjb'):
"""
Compute "Disaggregation" matrix representing conditional probability of an
intensity mesaure type ``imt`` exceeding, at least once, an intensity
measure level ``iml`` at a geographical location ``site``, given rupture
scenarios classified in terms of:
- rupture magnitude
- Joyner-Boore distance from rupture surface to site
- longitude and latitude of the surface projection of a rupture's point
closest to ``site``
- epsilon: number of standard deviations by which an intensity measure
level deviates from the median value predicted by a GSIM, given the
rupture parameters
- rupture tectonic region type
In other words, the disaggregation matrix allows to compute the probability
of each scenario with the specified properties (e.g., magnitude, or the
magnitude and distance) to cause one or more exceedences of a given hazard
level.
For more detailed information about the disaggregation, see for instance
"Disaggregation of Seismic Hazard", Paolo Bazzurro, C. Allin Cornell,
Bulletin of the Seismological Society of America, Vol. 89, pp. 501-520,
April 1999.
:param sources:
Seismic source model, as for
:mod:`PSHA <openquake.hazardlib.calc.hazard_curve>` calculator it
should be an iterator of seismic sources.
:param site:
:class:`~openquake.hazardlib.site.Site` of interest to calculate
disaggregation matrix for.
:param imt:
Instance of :mod:`intensity measure type <openquake.hazardlib.imt>`
class.
:param iml:
Intensity measure level. A float value in units of ``imt``.
:param gsim_by_trt:
Tectonic region type to GSIM objects mapping.
:param truncation_level:
Float, number of standard deviations for truncation of the intensity
distribution.
:param n_epsilons:
Integer number of epsilon histogram bins in the result matrix.
:param mag_bin_width:
Magnitude discretization step, width of one magnitude histogram bin.
:param dist_bin_width:
Distance histogram discretization step, in km.
:param coord_bin_width:
Longitude and latitude histograms discretization step,
in decimal degrees.
:param source_filter:
Optional source-site filter function. See
:mod:`openquake.hazardlib.calc.filters`.
:returns:
A tuple of two items. First is itself a tuple of bin edges information
for (in specified order) magnitude, distance, longitude, latitude,
epsilon and tectonic region types.
Second item is 6d-array representing the full disaggregation matrix.
Dimensions are in the same order as bin edges in the first item
of the result tuple. The matrix can be used directly by pmf-extractor
functions.
"""
trts = sorted(set(src.tectonic_region_type for src in sources))
trt_num = dict((trt, i) for i, trt in enumerate(trts))
rlzs_by_gsim = {gsim_by_trt[trt]: [0] for trt in trts}
by_trt = groupby(sources, operator.attrgetter('tectonic_region_type'))
bdata = {}
sitecol = SiteCollection([site])
iml2 = hdf5.ArrayWrapper(numpy.array([[iml]]),
dict(imts=[imt], poes_disagg=[None], rlzi=0))
eps3 = _eps3(truncation_level, n_epsilons)
for trt, srcs in by_trt.items():
cmaker = ContextMaker(
trt, rlzs_by_gsim,
{'truncation_level': truncation_level,
'maximum_distance': source_filter.integration_distance,
'filter_distance': filter_distance, 'imtls': {str(imt): [iml]}})
contexts.RuptureContext.temporal_occurrence_model = (
srcs[0].temporal_occurrence_model)
rdata = contexts.RupData(cmaker).from_srcs(srcs, sitecol)
idxs = _site_indices(rdata['sid_'], 1)[0]
bdata[trt] = _disaggregate(cmaker, sitecol, rdata, idxs, iml2, eps3)
if sum(len(bd.mags) for bd in bdata.values()) == 0:
warnings.warn(
'No ruptures have contributed to the hazard at site %s'
% site, RuntimeWarning)
return None, None
min_mag = min(bd.mags.min() for bd in bdata.values())
max_mag = max(bd.mags.max() for bd in bdata.values())
mag_bins = mag_bin_width * numpy.arange(
int(numpy.floor(min_mag / mag_bin_width)),
int(numpy.ceil(max_mag / mag_bin_width) + 1))
min_dist = min(bd.dists.min() for bd in bdata.values())
max_dist = max(bd.dists.max() for bd in bdata.values())
dist_bins = dist_bin_width * numpy.arange(
int(numpy.floor(min_dist / dist_bin_width)),
int(numpy.ceil(max_dist / dist_bin_width) + 1))
bb = (min(bd.lons.min() for bd in bdata.values()),
min(bd.lats.min() for bd in bdata.values()),
max(bd.lons.max() for bd in bdata.values()),
max(bd.lats.max() for bd in bdata.values()))
lon_bins, lat_bins = lon_lat_bins(bb, coord_bin_width)
eps_bins = numpy.linspace(-truncation_level, truncation_level,
n_epsilons + 1)
bin_edges = (mag_bins, dist_bins, lon_bins, lat_bins, eps_bins)
matrix = numpy.zeros((len(mag_bins) - 1, len(dist_bins) - 1,
len(lon_bins) - 1, len(lat_bins) - 1,
len(eps_bins) - 1, len(trts)))
for trt in bdata:
mat = _build_disagg_matrix(bdata[trt], bin_edges)[..., 0, 0, :]
matrix[..., trt_num[trt]] = mat
return bin_edges + (trts,), matrix
[docs]def mag_pmf(matrix):
"""
Fold full disaggregation matrix to magnitude PMF.
:returns:
1d array, a histogram representing magnitude PMF.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
mag_pmf = numpy.zeros(nmags)
for i in range(nmags):
mag_pmf[i] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for j in range(ndists)
for k in range(nlons)
for l in range(nlats)
for m in range(neps)])
return 1. - mag_pmf
[docs]def dist_pmf(matrix):
"""
Fold full disaggregation matrix to distance PMF.
:returns:
1d array, a histogram representing distance PMF.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
dist_pmf = numpy.zeros(ndists)
for j in range(ndists):
dist_pmf[j] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for i in range(nmags)
for k in range(nlons)
for l in range(nlats)
for m in range(neps)])
return 1. - dist_pmf
[docs]def trt_pmf(matrices):
"""
Fold full disaggregation matrix to tectonic region type PMF.
:param matrices:
a matrix with T submatrices
:returns:
an array of T probabilities one per each tectonic region type
"""
ntrts, nmags, ndists, nlons, nlats, neps = matrices.shape
pmf = numpy.zeros(ntrts)
for t in range(ntrts):
pmf[t] = 1. - numpy.prod(
[1. - matrices[t, i, j, k, l, m]
for i in range(nmags)
for j in range(ndists)
for k in range(nlons)
for l in range(nlats)
for m in range(neps)])
return pmf
[docs]def mag_dist_pmf(matrix):
"""
Fold full disaggregation matrix to magnitude / distance PMF.
:returns:
2d array. First dimension represents magnitude histogram bins,
second one -- distance histogram bins.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
mag_dist_pmf = numpy.zeros((nmags, ndists))
for i in range(nmags):
for j in range(ndists):
mag_dist_pmf[i, j] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for k in range(nlons)
for l in range(nlats)
for m in range(neps)])
return 1. - mag_dist_pmf
[docs]def mag_dist_eps_pmf(matrix):
"""
Fold full disaggregation matrix to magnitude / distance / epsilon PMF.
:returns:
3d array. First dimension represents magnitude histogram bins,
second one -- distance histogram bins, third one -- epsilon
histogram bins.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
mag_dist_eps_pmf = numpy.zeros((nmags, ndists, neps))
for i in range(nmags):
for j in range(ndists):
for m in range(neps):
mag_dist_eps_pmf[i, j, m] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for k in range(nlons)
for l in range(nlats)])
return 1. - mag_dist_eps_pmf
[docs]def lon_lat_pmf(matrix):
"""
Fold full disaggregation matrix to longitude / latitude PMF.
:returns:
2d array. First dimension represents longitude histogram bins,
second one -- latitude histogram bins.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
lon_lat_pmf = numpy.zeros((nlons, nlats))
for k in range(nlons):
for l in range(nlats):
lon_lat_pmf[k, l] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for i in range(nmags)
for j in range(ndists)
for m in range(neps)])
return 1. - lon_lat_pmf
[docs]def lon_lat_trt_pmf(matrices):
"""
Fold full disaggregation matrices to lon / lat / TRT PMF.
:param matrices:
a matrix with T submatrices
:returns:
3d array. First dimension represents longitude histogram bins,
second one latitude histogram bins, third one trt histogram bins.
"""
res = numpy.array([lon_lat_pmf(mat) for mat in matrices])
return res.transpose(1, 2, 0)
[docs]def mag_lon_lat_pmf(matrix):
"""
Fold full disaggregation matrix to magnitude / longitude / latitude PMF.
:returns:
3d array. First dimension represents magnitude histogram bins,
second one -- longitude histogram bins, third one -- latitude
histogram bins.
"""
nmags, ndists, nlons, nlats, neps = matrix.shape
mag_lon_lat_pmf = numpy.zeros((nmags, nlons, nlats))
for i in range(nmags):
for k in range(nlons):
for l in range(nlats):
mag_lon_lat_pmf[i, k, l] = numpy.prod(
[1. - matrix[i, j, k, l, m]
for j in range(ndists)
for m in range(neps)])
return 1. - mag_lon_lat_pmf
# this dictionary is useful to extract a fixed set of
# submatrices from the full disaggregation matrix
pmf_map = dict([
('Mag', mag_pmf),
('Dist', dist_pmf),
('TRT', trt_pmf),
('Mag_Dist', mag_dist_pmf),
('Mag_Dist_Eps', mag_dist_eps_pmf),
('Lon_Lat', lon_lat_pmf),
('Mag_Lon_Lat', mag_lon_lat_pmf),
('Lon_Lat_TRT', lon_lat_trt_pmf),
])