# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Classes for serializing various NRML XML artifacts.
"""
import operator
import numpy
from xml.etree import ElementTree as et
from openquake.baselib.node import Node, scientificformat, floatformat
from openquake.hazardlib import nrml
by_imt = operator.itemgetter('imt', 'sa_period', 'sa_damping')
SM_TREE_PATH = 'sourceModelTreePath'
GSIM_TREE_PATH = 'gsimTreePath'
#: Maps XML writer constructor keywords to XML attribute names
_ATTR_MAP = dict([
('statistics', 'statistics'),
('quantile_value', 'quantileValue'),
('smlt_path', 'sourceModelTreePath'),
('gsimlt_path', 'gsimTreePath'),
('imt', 'IMT'),
('investigation_time', 'investigationTime'),
('sa_period', 'saPeriod'),
('sa_damping', 'saDamping'),
('poe', 'poE'),
('lon', 'lon'),
('lat', 'lat'),
])
GML_NS = nrml.SERIALIZE_NS_MAP['gml']
def _validate_hazard_metadata(md):
"""
Validate metadata `dict` of attributes, which are more or less the same for
hazard curves, hazard maps, and disaggregation histograms.
:param dict md:
`dict` which can contain the following keys:
* statistics
* gsimlt_path
* smlt_path
* imt
* sa_period
* sa_damping
:raises:
:exc:`ValueError` if the metadata is not valid.
"""
if (md.get('statistics') is not None and (
md.get('smlt_path') is not None or
md.get('gsimlt_path') is not None)):
raise ValueError('Cannot specify both `statistics` and logic tree '
'paths')
if md.get('statistics') is not None:
# make sure only valid statistics types are specified
if md.get('statistics') not in ('mean', 'max', 'quantile', 'std'):
raise ValueError('`statistics` must be either `mean`, `max`, or '
'`quantile`')
else:
# must specify both logic tree paths
if md.get('smlt_path') is None or md.get('gsimlt_path') is None:
raise ValueError('Both logic tree paths are required for '
'non-statistical results')
if md.get('statistics') == 'quantile':
if md.get('quantile_value') is None:
raise ValueError('quantile stastics results require a quantile'
' value to be specified')
if not md.get('statistics') == 'quantile':
if md.get('quantile_value') is not None:
raise ValueError('Quantile value must be specified with '
'quantile statistics')
if md.get('imt') == 'SA':
if md.get('sa_period') is None:
raise ValueError('`sa_period` is required for IMT == `SA`')
if md.get('sa_damping') is None:
raise ValueError('`sa_damping` is required for IMT == `SA`')
def _set_metadata(element, metadata, attr_map, transform=str):
"""
Set metadata attributes on a given ``element``.
:param element:
:class:`xml.etree.ElementTree.Element` instance
:param metadata:
Dictionary of metadata items containing attribute data for ``element``.
:param attr_map:
Dictionary mapping of metadata key->attribute name.
:param transform:
A function accepting and returning a single value to be applied to each
attribute value. Defaults to `str`.
"""
for kw, attr in attr_map.items():
value = metadata.get(kw)
if value is not None:
element.set(attr, transform(value))
[docs]class BaseCurveWriter(object):
"""
Base class for curve writers.
:param dest:
File path (including filename) or file-like object for results to
be saved to.
:param metadata:
The following keyword args are required:
* investigation_time: Investigation time (in years) defined in the
calculation which produced these results.
The following are more or less optional (combinational rules noted
below where applicable):
* statistics: 'mean' or 'quantile'
* quantile_value: Only required if statistics = 'quantile'.
* smlt_path: String representing the logic tree path which produced
these curves. Only required for non-statistical curves.
* gsimlt_path: String represeting the GSIM logic tree path which
produced these curves. Only required for non-statisical curves.
"""
def __init__(self, dest, **metadata):
self.dest = dest
self.metadata = metadata
_validate_hazard_metadata(metadata)
[docs] def serialize(self, _data):
"""
Implement in subclasses.
"""
raise NotImplementedError
[docs]class HazardCurveXMLWriter(BaseCurveWriter):
"""
Hazard Curve XML writer. See :class:`BaseCurveWriter` for a list of
general constructor inputs.
The following additional metadata params are required:
* imt: Intensity measure type used to compute these hazard curves.
* imls: Intensity measure levels, which represent the x-axis values of
each curve.
The following parameters are optional:
* sa_period: Only used with imt = 'SA'.
* sa_damping: Only used with imt = 'SA'.
"""
[docs] def serialize(self, data):
"""
Write a sequence of hazard curves to the specified file.
:param data:
Iterable of hazard curve data. Each datum must be an object with
the following attributes:
* poes: A list of probability of exceedence values (floats).
* location: An object representing the location of the curve; must
have `x` and `y` to represent lon and lat, respectively.
"""
with open(self.dest, 'wb') as fh:
root = et.Element('nrml')
self.add_hazard_curves(root, self.metadata, data)
nrml.write(list(root), fh)
[docs] def add_hazard_curves(self, root, metadata, data):
"""
Add hazard curves stored into `data` as child of the `root`
element with `metadata`. See the documentation of the method
`serialize` and the constructor for a description of `data`
and `metadata`, respectively.
"""
hazard_curves = et.SubElement(root, 'hazardCurves')
_set_metadata(hazard_curves, metadata, _ATTR_MAP)
imls_elem = et.SubElement(hazard_curves, 'IMLs')
imls_elem.text = ' '.join(map(scientificformat, metadata['imls']))
gml_ns = nrml.SERIALIZE_NS_MAP['gml']
for hc in data:
hc_elem = et.SubElement(hazard_curves, 'hazardCurve')
gml_point = et.SubElement(hc_elem, '{%s}Point' % gml_ns)
gml_pos = et.SubElement(gml_point, '{%s}pos' % gml_ns)
gml_pos.text = '%s %s' % (hc.location.x, hc.location.y)
poes_elem = et.SubElement(hc_elem, 'poEs')
poes_elem.text = ' '.join(map(scientificformat, hc.poes))
[docs]def gen_gmfs(gmf_set):
"""
Generate GMF nodes from a gmf_set
:param gmf_set: a sequence of GMF objects with attributes
imt, sa_period, sa_damping, event_id and containing a list
of GMF nodes with attributes gmv and location. The nodes
are sorted by lon/lat.
"""
for gmf in gmf_set:
gmf_node = Node('gmf')
gmf_node['IMT'] = gmf.imt
if gmf.imt == 'SA':
gmf_node['saPeriod'] = str(gmf.sa_period)
gmf_node['saDamping'] = str(gmf.sa_damping)
gmf_node['ruptureId'] = gmf.event_id
sorted_nodes = sorted(gmf)
gmf_node.nodes = (
Node('node', dict(gmv=n.gmv, lon=n.location.x, lat=n.location.y))
for n in sorted_nodes)
yield gmf_node
[docs]def sub_elems(elem, rup, *names):
for name in names:
value = getattr(rup, name)
# NB: dip and strike can be NaN for griddedRuptures
if not numpy.isnan(value):
et.SubElement(elem, name).text = '%.7e' % value
[docs]def rupture_to_element(rup, parent=None):
"""
Convert a rupture object into an Element object.
:param rup:
must have attributes .rupid, .events_by_ses and .seed
:param parent:
parent of the returned element, or None
"""
if parent is None:
parent = et.Element('root')
rup_elem = et.SubElement(parent, rup.typology)
elem = et.SubElement(rup_elem, 'stochasticEventSets')
for ses in rup.events_by_ses:
eids = rup.events_by_ses[ses]['id']
ses_elem = et.SubElement(elem, 'SES', id=ses)
ses_elem.text = ' '.join(str(eid) for eid in eids)
rup_elem.set('id', rup.rupid)
rup_elem.set('multiplicity', rup.n_occ)
sub_elems(rup_elem, rup, 'magnitude', 'strike', 'dip', 'rake')
h = rup.hypocenter
et.SubElement(rup_elem, 'hypocenter', dict(lon=h.x, lat=h.y, depth=h.z))
if rup.is_from_fault_source:
# rup is from a simple or complex fault source
# the rup geometry is represented by a mesh of 3D
# points
mesh_elem = et.SubElement(rup_elem, 'mesh')
# we assume the mesh components (lons, lats, depths)
# are of uniform shape
for i, row in enumerate(rup.lons):
for j, col in enumerate(row):
node_elem = et.SubElement(mesh_elem, 'node')
node_elem.set('row', str(i))
node_elem.set('col', str(j))
node_elem.set('lon', str(rup.lons[i][j]))
node_elem.set('lat', str(rup.lats[i][j]))
node_elem.set('depth', str(rup.depths[i][j]))
# if we never entered the loop above, it's possible
# that i and j will be undefined
mesh_elem.set('rows', str(i + 1))
mesh_elem.set('cols', str(j + 1))
elif rup.is_gridded_surface:
# the rup geometry is represented by a mesh of (1, N) points
mesh_elem = et.SubElement(rup_elem, 'mesh')
for j, _ in enumerate(rup.lons):
node_elem = et.SubElement(mesh_elem, 'node')
node_elem.set('row', '0')
node_elem.set('col', str(j))
node_elem.set('lon', str(rup.lons[j]))
node_elem.set('lat', str(rup.lats[j]))
node_elem.set('depth', str(rup.depths[j]))
else:
# rupture is from a multi surface fault source
if rup.is_multi_surface:
# the arrays lons, lats and depths contain 4*N elements,
# where N is the number of planar surfaces contained in the
# multisurface; each planar surface if characterised by 4
# vertices top_left, top_right, bottom_left, bottom_right
assert len(rup.lons) % 4 == 0
assert len(rup.lons) == len(rup.lats) == len(rup.depths)
for offset in range(len(rup.lons) // 4):
# looping on the coordinates of the sub surfaces, one
# planar surface at the time
start = offset * 4
end = offset * 4 + 4
lons = rup.lons[start:end] # 4 lons of the current surface
lats = rup.lats[start:end] # 4 lats of the current surface
depths = rup.depths[start:end] # 4 depths
ps_elem = et.SubElement(
rup_elem, 'planarSurface')
top_left, top_right, bottom_left, bottom_right = \
zip(lons, lats, depths)
for el_name, corner in (
('topLeft', top_left),
('topRight', top_right),
('bottomLeft', bottom_left),
('bottomRight', bottom_right)):
corner_elem = et.SubElement(ps_elem, el_name)
corner_elem.set('lon', '%.7f' % corner[0])
corner_elem.set('lat', '%.7f' % corner[1])
corner_elem.set('depth', '%.7f' % corner[2])
else:
# rupture is from a point or area source
# the rupture geometry is represented by four 3D
# corner points
ps_elem = et.SubElement(rup_elem, 'planarSurface')
# create the corner point elements, in the order of:
# * top left
# * top right
# * bottom left
# * bottom right
for el_name, corner in (
('topLeft', rup.top_left_corner),
('topRight', rup.top_right_corner),
('bottomLeft', rup.bottom_left_corner),
('bottomRight', rup.bottom_right_corner)):
corner_elem = et.SubElement(ps_elem, el_name)
corner_elem.set('lon', '%.7f' % corner[0])
corner_elem.set('lat', '%.7f' % corner[1])
corner_elem.set('depth', '%.7f' % corner[2])
return parent
[docs]class SESXMLWriter(object):
"""
:param dest:
File path (including filename) or a file-like object for XML results to
be saved to.
:param str sm_lt_path:
Source model logic tree branch identifier of the logic tree realization
which produced this collection of stochastic event sets.
:param gsim_lt_path:
GSIM logic tree branch identifier of the logic tree realization which
produced this collection of stochastic event sets.
"""
def __init__(self, dest):
self.dest = dest
[docs] def serialize(self, data, investigation_time):
"""
Serialize a collection of stochastic event sets to XML.
:param data:
A dictionary src_group_id -> list of
:class:`openquake.commonlib.calc.Rupture` objects.
Each Rupture should have the following attributes:
* `rupid`
* `events_by_ses`
* `magnitude`
* `strike`
* `dip`
* `rake`
* `tectonic_region_type`
* `is_from_fault_source` (a `bool`)
* `is_multi_surface` (a `bool`)
* `lons`
* `lats`
* `depths`
If `is_from_fault_source` is `True`, the rupture originated from a
simple or complex fault sources. In this case, `lons`, `lats`, and
`depths` should all be 2D arrays (of uniform shape). These
coordinate triples represent nodes of the rupture mesh.
If `is_from_fault_source` is `False`, the rupture originated from a
point or area source. In this case, the rupture is represented by a
quadrilateral planar surface. This planar surface is defined by 3D
vertices. In this case, the rupture should have the following
attributes:
* `top_left_corner`
* `top_right_corner`
* `bottom_right_corner`
* `bottom_left_corner`
Each of these should be a triple of `lon`, `lat`, `depth`.
If `is_multi_surface` is `True`, the rupture originated from a
multi-surface source. In this case, `lons`, `lats`, and `depths`
should have uniform length. The length should be a multiple of 4,
where each segment of 4 represents the corner points of a planar
surface in the following order:
* top left
* top right
* bottom left
* bottom right
Each of these should be a triple of `lon`, `lat`, `depth`.
:param investigation_time:
Investigation time parameter specified in the job.ini
"""
with open(self.dest, 'wb') as fh:
root = et.Element('nrml')
ses_container = et.SubElement(root, 'ruptureCollection')
ses_container.set('investigationTime', str(investigation_time))
for grp_id in sorted(data):
attrs = dict(
id=grp_id,
tectonicRegion=data[grp_id][0].tectonic_region_type)
sg = et.SubElement(ses_container, 'ruptureGroup', attrs)
for rupture in data[grp_id]:
rupture_to_element(rupture, sg)
nrml.write(list(root), fh)
[docs]class HazardMapWriter(object):
"""
:param dest:
File path (including filename) or a file-like object for results to be
saved to.
:param metadata:
The following keyword args are required:
* investigation_time: Investigation time (in years) defined in the
calculation which produced these results.
* imt: Intensity measure type used to compute these hazard curves.
* poe: The Probability of Exceedance level for which this hazard map
was produced.
The following are more or less optional (combinational rules noted
below where applicable):
* statistics: 'mean' or 'quantile'
* quantile_value: Only required if statistics = 'quantile'.
* smlt_path: String representing the logic tree path which produced
these curves. Only required for non-statistical curves.
* gsimlt_path: String represeting the GSIM logic tree path which
produced these curves. Only required for non-statisical curves.
* sa_period: Only used with imt = 'SA'.
* sa_damping: Only used with imt = 'SA'.
"""
def __init__(self, dest, **metadata):
self.dest = dest
self.metadata = metadata
_validate_hazard_metadata(metadata)
[docs] def serialize(self, data):
"""
Write a sequence of hazard map data to the specified file.
:param data:
Iterable of hazard map data. Each datum should be a triple of
(lon, lat, iml) values.
"""
raise NotImplementedError()
[docs]class HazardMapXMLWriter(HazardMapWriter):
"""
NRML/XML implementation of a :class:`HazardMapWriter`.
See :class:`HazardMapWriter` for information about constructor parameters.
"""
[docs] def serialize(self, data):
"""
Serialize hazard map data to XML.
See :meth:`HazardMapWriter.serialize` for details about the expected
input.
"""
with open(self.dest, 'wb') as fh:
root = et.Element('nrml')
hazard_map = et.SubElement(root, 'hazardMap')
_set_metadata(hazard_map, self.metadata, _ATTR_MAP)
for lon, lat, iml in data:
node = et.SubElement(hazard_map, 'node')
node.set('lon', str(lon))
node.set('lat', str(lat))
node.set('iml', str(iml))
nrml.write(list(root), fh)
[docs]class DisaggXMLWriter(object):
"""
:param dest:
File path (including filename) or file-like object for XML results to
be saved to.
:param metadata:
The following keyword args are required:
* investigation_time: Investigation time (in years) defined in the
calculation which produced these results.
* imt: Intensity measure type used to compute these matrices.
* lon, lat: Longitude and latitude associated with these results.
The following attributes define dimension context for the result
matrices:
* mag_bin_edges: List of magnitude bin edges (floats)
* dist_bin_edges: List of distance bin edges (floats)
* lon_bin_edges: List of longitude bin edges (floats)
* lat_bin_edges: List of latitude bin edges (floats)
* eps_bin_edges: List of epsilon bin edges (floats)
* tectonic_region_types: List of tectonic region types (strings)
* smlt_path: String representing the logic tree path which produced
these results. Only required for non-statistical results.
* gsimlt_path: String represeting the GSIM logic tree path which
produced these results. Only required for non-statistical results.
The following are optional, depending on the `imt`:
* sa_period
* sa_damping
"""
#: Maps metadata keywords to XML attribute names for bin edge information
#: passed to the constructor.
BIN_EDGE_ATTR_MAP = dict([
('mag_bin_edges', 'magBinEdges'),
('dist_bin_edges', 'distBinEdges'),
('lon_bin_edges', 'lonBinEdges'),
('lat_bin_edges', 'latBinEdges'),
('eps_bin_edges', 'epsBinEdges'),
('tectonic_region_types', 'tectonicRegionTypes'),
])
DIM_LABEL_TO_BIN_EDGE_MAP = dict([
('Mag', 'mag_bin_edges'),
('Dist', 'dist_bin_edges'),
('Lon', 'lon_bin_edges'),
('Lat', 'lat_bin_edges'),
('Eps', 'eps_bin_edges'),
('TRT', 'tectonic_region_types'),
])
def __init__(self, dest, **metadata):
self.dest = dest
self.metadata = metadata
_validate_hazard_metadata(self.metadata)
[docs] def serialize(self, data):
"""
:param data:
A sequence of data where each datum has the following attributes:
* matrix: N-dimensional numpy array containing the disaggregation
histogram.
* dim_labels: A list of strings which label the dimensions of a
given histogram. For example, for a Magnitude-Distance-Epsilon
histogram, we would expect `dim_labels` to be
``['Mag', 'Dist', 'Eps']``.
* poe: The disaggregation Probability of Exceedance level for which
these results were produced.
* iml: Intensity measure level, interpolated from the source hazard
curve at the given ``poe``.
"""
with open(self.dest, 'wb') as fh, floatformat('%.6E'):
root = et.Element('nrml')
diss_matrices = et.SubElement(root, 'disaggMatrices')
_set_metadata(diss_matrices, self.metadata, _ATTR_MAP)
transform = lambda val: ', '.join(map(scientificformat, val))
_set_metadata(diss_matrices, self.metadata, self.BIN_EDGE_ATTR_MAP,
transform=transform)
for result in data:
diss_matrix = et.SubElement(diss_matrices, 'disaggMatrix')
# Check that we have bin edges defined for each dimension label
# (mag, dist, lon, lat, eps, TRT)
for label in result.dim_labels:
bin_edge_attr = self.DIM_LABEL_TO_BIN_EDGE_MAP.get(label)
assert self.metadata.get(bin_edge_attr) is not None, (
"Writer is missing '%s' metadata" % bin_edge_attr
)
result_type = ','.join(result.dim_labels)
diss_matrix.set('type', result_type)
dims = ','.join(str(x) for x in result.matrix.shape)
diss_matrix.set('dims', dims)
diss_matrix.set('poE', scientificformat(result.poe))
diss_matrix.set('iml', scientificformat(result.iml))
for idxs, value in numpy.ndenumerate(result.matrix):
prob = et.SubElement(diss_matrix, 'prob')
index = ','.join([str(x) for x in idxs])
prob.set('index', index)
prob.set('value', scientificformat(value))
nrml.write(list(root), fh)
[docs]class UHSXMLWriter(BaseCurveWriter):
"""
UHS curve XML writer. See :class:`BaseCurveWriter` for a list of general
constructor inputs.
The following additional metadata params are required:
* poe: Probability of exceedance for which a given set of UHS have been
computed
* periods: A list of SA (Spectral Acceleration) period values, sorted
ascending order
"""
def __init__(self, dest, **metadata):
super().__init__(dest, **metadata)
if self.metadata.get('poe') is None:
raise ValueError('`poe` keyword arg is required')
periods = self.metadata.get('periods')
if periods is None:
raise ValueError('`periods` keyword arg is required')
if len(periods) == 0:
raise ValueError('`periods` must contain at least one value')
if not sorted(periods) == periods:
raise ValueError(
'`periods` values must be sorted in ascending order'
)
[docs] def serialize(self, data):
"""
Write a sequence of uniform hazard spectra to the specified file.
:param data:
Iterable of UHS data. Each datum must be an object with the
following attributes:
* imls: A sequence of Intensity Measure Levels
* location: An object representing the location of the curve; must
have `x` and `y` to represent lon and lat, respectively.
"""
gml_ns = nrml.SERIALIZE_NS_MAP['gml']
with open(self.dest, 'wb') as fh:
root = et.Element('nrml')
uh_spectra = et.SubElement(root, 'uniformHazardSpectra')
_set_metadata(uh_spectra, self.metadata, _ATTR_MAP)
periods_elem = et.SubElement(uh_spectra, 'periods')
periods_elem.text = ' '.join([str(x)
for x in self.metadata['periods']])
for uhs in data:
uhs_elem = et.SubElement(uh_spectra, 'uhs')
gml_point = et.SubElement(uhs_elem, '{%s}Point' % gml_ns)
gml_pos = et.SubElement(gml_point, '{%s}pos' % gml_ns)
gml_pos.text = '%s %s' % (uhs.location.x, uhs.location.y)
imls_elem = et.SubElement(uhs_elem, 'IMLs')
imls_elem.text = ' '.join(['%10.7E' % x for x in uhs.imls])
nrml.write(list(root), fh)