Source code for openquake.calculators.ucerf_classical
# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import os
import logging
import operator
import numpy as np
from openquake.baselib import parallel, general
from openquake.hazardlib.calc.hazard_curve import classical
from openquake.commonlib.source_model_factory import random_filtered_sources
from openquake.calculators import base
from openquake.calculators.classical import (
ClassicalCalculator, classical_split_filter)
[docs]@base.calculators.add('ucerf_classical')
class UcerfClassicalCalculator(ClassicalCalculator):
"""
UCERF classical calculator.
"""
accept_precalc = ['ucerf_classical']
[docs] def pre_execute(self):
super().pre_execute()
self.csm_info = self.csm.info
for sm in self.csm.source_models: # one branch at the time
[grp] = sm.src_groups
for src in grp:
grp.tot_ruptures += src.num_ruptures
[docs] def execute(self):
"""
Run in parallel `core_task(sources, sitecol, monitor)`, by
parallelizing on the sources according to their weight and
tectonic region type.
"""
monitor = self.monitor(self.core_task.__name__)
oq = self.oqparam
acc = self.acc0()
self.nsites = [] # used in agg_dicts
param = dict(imtls=oq.imtls, truncation_level=oq.truncation_level,
filter_distance=oq.filter_distance, maxweight=1E10,
task_duration=1000)
self.calc_times = general.AccumDict(accum=np.zeros(3, np.float32))
[gsims] = sorted(self.csm.info.gsim_lt.values.values())
sample = .001 if os.environ.get('OQ_SAMPLE_SOURCES') else None
srcfilter = self.src_filter()
for sm in self.csm.source_models: # one branch at the time
[grp] = sm.src_groups
[src] = grp
srcs = list(src)
if sample:
srcs = random_filtered_sources(srcs, srcfilter, 1)
acc = parallel.Starmap.apply(
classical_split_filter,
(srcs, srcfilter, gsims, param, monitor),
weight=operator.attrgetter('weight'),
concurrent_tasks=oq.concurrent_tasks,
h5=self.datastore.hdf5
).reduce(self.agg_dicts, acc)
ucerf = grp.sources[0].orig
logging.info('Getting background sources from %s', ucerf.source_id)
srcs = ucerf.get_background_sources(srcfilter, sample)
acc = parallel.Starmap.apply(
classical, (srcs, srcfilter, gsims, param, monitor),
weight=operator.attrgetter('weight'),
concurrent_tasks=oq.concurrent_tasks,
h5=self.datastore.hdf5
).reduce(self.agg_dicts, acc)
self.store_rlz_info(acc.eff_ruptures)
self.store_source_info(self.calc_times)
return acc # {grp_id: pmap}