# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2019 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import functools
import numpy
from openquake.baselib.python3compat import zip, encode
from openquake.baselib.general import AccumDict
from openquake.risklib import scientific, riskinput
from openquake.calculators import base
U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32
F64 = numpy.float64 # higher precision to avoid task order dependency
stat_dt = numpy.dtype([('mean', F32), ('stddev', F32)])
def _event_slice(num_gmfs, r):
return slice(r * num_gmfs, (r + 1) * num_gmfs)
[docs]def scenario_risk(riskinputs, crmodel, param, monitor):
"""
Core function for a scenario computation.
:param riskinput:
a of :class:`openquake.risklib.riskinput.RiskInput` object
:param crmodel:
a :class:`openquake.risklib.riskinput.CompositeRiskModel` instance
:param param:
dictionary of extra parameters
:param monitor:
:class:`openquake.baselib.performance.Monitor` instance
:returns:
a dictionary {
'agg': array of shape (E, L, R, 2),
'avg': list of tuples (lt_idx, rlz_idx, asset_ordinal, statistics)
}
where E is the number of simulated events, L the number of loss types,
R the number of realizations and statistics is an array of shape
(n, R, 4), with n the number of assets in the current riskinput object
"""
E = param['E']
L = len(crmodel.loss_types)
result = dict(agg=numpy.zeros((E, L), F32), avg=[],
all_losses=AccumDict(accum={}))
for ri in riskinputs:
for out in ri.gen_outputs(crmodel, monitor, param['epspath']):
r = out.rlzi
slc = param['event_slice'](r)
for l, loss_type in enumerate(crmodel.loss_types):
losses = out[loss_type]
if numpy.product(losses.shape) == 0: # happens for all NaNs
continue
stats = numpy.zeros(len(ri.assets), stat_dt) # mean, stddev
for a, asset in enumerate(ri.assets):
stats['mean'][a] = losses[a].mean()
stats['stddev'][a] = losses[a].std(ddof=1)
result['avg'].append((l, r, asset['ordinal'], stats[a]))
agglosses = losses.sum(axis=0) # shape num_gmfs
result['agg'][slc, l] += agglosses
if param['asset_loss_table']:
aids = ri.assets['ordinal']
result['all_losses'][l, r] += AccumDict(zip(aids, losses))
return result
[docs]@base.calculators.add('scenario_risk')
class ScenarioRiskCalculator(base.RiskCalculator):
"""
Run a scenario risk calculation
"""
core_task = scenario_risk
is_stochastic = True
precalc = 'scenario'
accept_precalc = ['scenario']
[docs] def pre_execute(self):
"""
Compute the GMFs, build the epsilons, the riskinputs, and a dictionary
with the unit of measure, used in the export phase.
"""
oq = self.oqparam
super().pre_execute()
self.assetcol = self.datastore['assetcol']
self.event_slice = functools.partial(
_event_slice, oq.number_of_ground_motion_fields)
E = oq.number_of_ground_motion_fields * self.R
self.riskinputs = self.build_riskinputs('gmf')
self.param['epspath'] = riskinput.cache_epsilons(
self.datastore, oq, self.assetcol, self.crmodel, E)
self.param['E'] = E
# assuming the weights are the same for all IMTs
try:
self.param['weights'] = self.datastore['weights'][()]
except KeyError:
self.param['weights'] = [1 / self.R for _ in range(self.R)]
self.param['event_slice'] = self.event_slice
self.param['asset_loss_table'] = self.oqparam.asset_loss_table
[docs] def post_execute(self, result):
"""
Compute stats for the aggregated distributions and save
the results on the datastore.
"""
loss_dt = self.oqparam.loss_dt()
L = len(loss_dt.names)
dtlist = [('event_id', U32), ('rlzi', U16), ('loss', (F32, (L,)))]
R = self.R
with self.monitor('saving outputs'):
A = len(self.assetcol)
# agg losses
res = result['agg']
E, L = res.shape
agglosses = numpy.zeros((R, L), stat_dt)
for r in range(R):
mean, std = scientific.mean_std(res[self.event_slice(r)])
agglosses[r]['mean'] = F32(mean)
agglosses[r]['stddev'] = F32(std)
# losses by asset
losses_by_asset = numpy.zeros((A, R, L), stat_dt)
for (l, r, aid, stat) in result['avg']:
losses_by_asset[aid, r, l] = stat
self.datastore['losses_by_asset'] = losses_by_asset
self.datastore['agglosses'] = agglosses
# losses by event
lbe = numpy.zeros(E, dtlist)
lbe['event_id'] = range(E)
lbe['rlzi'] = (lbe['event_id'] //
self.oqparam.number_of_ground_motion_fields)
lbe['loss'] = res
self.datastore['losses_by_event'] = lbe
loss_types = self.oqparam.loss_dt().names
self.datastore.set_attrs('losses_by_event', loss_types=loss_types)
# all losses
if self.oqparam.asset_loss_table:
array = numpy.zeros((A, E), loss_dt)
for (l, r), losses_by_aid in result['all_losses'].items():
slc = self.event_slice(r)
for aid in losses_by_aid:
lba = losses_by_aid[aid] # E
lt = loss_dt.names[l]
array[lt][aid, slc] = lba
self.datastore['asset_loss_table'] = array
tags = [encode(tag) for tag in self.assetcol.tagcol]
self.datastore.set_attrs('asset_loss_table', tags=tags)