Source code for openquake.calculators.scenario

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2018 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import logging
import numpy

from openquake.hazardlib.calc.gmf import GmfComputer
from openquake.hazardlib.gsim.base import ContextMaker
from openquake.hazardlib.calc.stochastic import get_rup_array
from openquake.hazardlib.source.rupture import EBRupture, events_dt
from openquake.commonlib import readinput, source, calc
from openquake.calculators import base


[docs]@base.calculators.add('scenario') class ScenarioCalculator(base.HazardCalculator): """ Scenario hazard calculator """ is_stochastic = True
[docs] def pre_execute(self): """ Read the site collection and initialize GmfComputer and seeds """ oq = self.oqparam cinfo = source.CompositionInfo.fake(readinput.get_gsim_lt(oq)) self.datastore['csm_info'] = cinfo if 'rupture_model' not in oq.inputs: logging.warn('There is no rupture_model, the calculator will just ' 'import data without performing any calculation') super().pre_execute() return self.rup = readinput.get_rupture(oq) self.gsims = readinput.get_gsims(oq) R = len(self.gsims) self.cmaker = ContextMaker(self.gsims, oq.maximum_distance, {'filter_distance': oq.filter_distance}) super().pre_execute() self.datastore['oqparam'] = oq self.rlzs_assoc = cinfo.get_rlzs_assoc() rlzs_by_gsim = self.rlzs_assoc.get_rlzs_by_gsim(0) E = oq.number_of_ground_motion_fields n_occ = numpy.array([E]) ebr = EBRupture(self.rup, 0, 0, n_occ) events = numpy.zeros(E * R, events_dt) for rlz, eids in ebr.get_eids_by_rlz(rlzs_by_gsim).items(): events[rlz * E: rlz * E + E]['eid'] = eids events[rlz * E: rlz * E + E]['rlz'] = rlz self.datastore['events'] = events rupser = calc.RuptureSerializer(self.datastore) rup_array = get_rup_array([ebr]) if len(rup_array) == 0: maxdist = oq.maximum_distance( self.rup.tectonic_region_type, self.rup.mag) raise RuntimeError('There are no sites within the maximum_distance' ' of %s km from the rupture' % maxdist) rupser.save(rup_array) rupser.close() self.computer = GmfComputer( ebr, self.sitecol, oq.imtls, self.cmaker, oq.truncation_level, oq.correl_model)
[docs] def init(self): pass
[docs] def execute(self): """ Compute the GMFs and return a dictionary gsim -> array(N, E, I) """ self.gmfa = {} if 'rupture_model' not in self.oqparam.inputs: return self.gmfa with self.monitor('computing gmfs'): E = self.oqparam.number_of_ground_motion_fields for gsim in self.gsims: gmfa = self.computer.compute(gsim, E) # shape (I, N, E) self.gmfa[gsim] = gmfa.transpose(1, 2, 0) # shape (N, E, I) return self.gmfa
[docs] def post_execute(self, dummy): if self.gmfa: with self.monitor('saving gmfs', autoflush=True): base.save_gmf_data( self.datastore, self.sitecol, numpy.array(list(self.gmfa.values())), self.oqparam.imtls)