Source code for openquake.calculators.event_based

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2018 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

import os.path
import logging
import collections
import operator
import numpy

from openquake.baselib import hdf5, datastore
from openquake.baselib.python3compat import zip
from openquake.baselib.general import AccumDict, cached_property
from openquake.hazardlib.probability_map import ProbabilityMap
from openquake.hazardlib.stats import compute_pmap_stats
from openquake.hazardlib.calc.stochastic import sample_ruptures
from openquake.hazardlib.source import rupture
from openquake.risklib.riskinput import str2rsi
from openquake.baselib import parallel
from openquake.commonlib import calc, util
from openquake.calculators import base
from openquake.calculators.getters import (
    GmfGetter, RuptureGetter, get_rupture_getters)
from openquake.calculators.classical import ClassicalCalculator

U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
U64 = numpy.uint64
F32 = numpy.float32
F64 = numpy.float64
TWO32 = U64(2 ** 32)
rlzs_by_grp_dt = numpy.dtype(
    [('grp_id', U16), ('gsim_id', U16), ('rlzs', hdf5.vuint16)])
by_grp = operator.attrgetter('src_group_id')


[docs]def store_rlzs_by_grp(dstore): """ Save in the datastore a composite array with fields (grp_id, gsim_id, rlzs) """ lst = [] assoc = dstore['csm_info'].get_rlzs_assoc() logging.info('There are %d realizations', len(assoc.realizations)) for grp, arr in assoc.by_grp().items(): for gsim_id, rlzs in enumerate(arr): lst.append((int(grp[4:]), gsim_id, rlzs)) dstore['csm_info/rlzs_by_grp'] = numpy.array(lst, rlzs_by_grp_dt)
# ######################## GMF calculator ############################ #
[docs]def update_nbytes(dstore, key, array): nbytes = dstore.get_attr(key, 'nbytes', 0) dstore.set_attrs(key, nbytes=nbytes + array.nbytes)
[docs]def get_mean_curves(dstore): """ Extract the mean hazard curves from the datastore, as a composite array of length nsites. """ return dstore['hcurves/mean'].value
# ########################################################################## #
[docs]def compute_gmfs(rupgetter, srcfilter, param, monitor): """ Compute GMFs and optionally hazard curves """ with monitor('getting ruptures'): ebruptures = rupgetter.get_ruptures(srcfilter) getter = GmfGetter( rupgetter.rlzs_by_gsim, ebruptures, srcfilter.sitecol, param['oqparam'], param['min_iml']) return getter.compute_gmfs_curves(monitor)
[docs]@base.calculators.add('event_based') class EventBasedCalculator(base.HazardCalculator): """ Event based PSHA calculator generating the ground motion fields and the hazard curves from the ruptures, depending on the configuration parameters. """ core_task = compute_gmfs is_stochastic = True build_ruptures = sample_ruptures @cached_property def csm_info(self): """ :returns: a cached CompositionInfo object """ try: return self.csm.info except AttributeError: return self.datastore.parent['csm_info']
[docs] def init(self): if hasattr(self, 'csm'): self.check_floating_spinning() self.rupser = calc.RuptureSerializer(self.datastore)
[docs] def init_logic_tree(self, csm_info): self.grp_trt = csm_info.grp_by("trt") self.rlzs_assoc = csm_info.get_rlzs_assoc() self.rlzs_by_gsim_grp = csm_info.get_rlzs_by_gsim_grp() self.samples_by_grp = csm_info.get_samples_by_grp() self.num_rlzs_by_grp = { grp_id: sum(len(rlzs) for rlzs in self.rlzs_by_gsim_grp[grp_id].values()) for grp_id in self.rlzs_by_gsim_grp} self.R = len(self.rlzs_assoc.realizations)
[docs] def zerodict(self): """ Initial accumulator, a dictionary (grp_id, gsim) -> curves """ self.L = len(self.oqparam.imtls.array) zd = {r: ProbabilityMap(self.L) for r in range(self.R)} self.E = len(self.datastore['events']) return zd
[docs] def from_sources(self, par): """ Prefilter the composite source model and store the source_info """ oq = self.oqparam gsims_by_trt = self.csm.gsim_lt.values def weight_src(src): return src.num_ruptures logging.info('Building ruptures') smap = parallel.Starmap( self.build_ruptures.__func__, monitor=self.monitor()) eff_ruptures = AccumDict(accum=0) # grp_id => potential ruptures calc_times = AccumDict(accum=numpy.zeros(3, F32)) ses_idx = 0 for sm_id, sm in enumerate(self.csm.source_models): logging.info('Sending %s', sm) for sg in sm.src_groups: if not sg.sources: continue par['gsims'] = gsims_by_trt[sg.trt] for block in self.block_splitter( sg.sources, weight_src, by_grp): if 'ucerf' in oq.calculation_mode: for i in range(oq.ses_per_logic_tree_path): par['ses_seeds'] = [(ses_idx, oq.ses_seed + i + 1)] smap.submit(block, par) ses_idx += 1 else: smap.submit(block, par) mon = self.monitor('saving ruptures') for dic in smap: if dic['calc_times']: calc_times += dic['calc_times'] if dic['eff_ruptures']: eff_ruptures += dic['eff_ruptures'] if dic['rup_array']: with mon: self.rupser.save(dic['rup_array']) self.rupser.close() # logic tree reduction, must be called before storing the events self.store_csm_info(eff_ruptures) store_rlzs_by_grp(self.datastore) self.init_logic_tree(self.csm.info) with self.monitor('store source_info', autoflush=True): self.store_source_info(calc_times) logging.info('Reordering the ruptures and storing the events') attrs = self.datastore.getitem('ruptures').attrs sorted_ruptures = self.datastore.getitem('ruptures').value # order the ruptures by serial sorted_ruptures.sort(order='serial') self.datastore['ruptures'] = sorted_ruptures self.datastore.set_attrs('ruptures', **attrs) rgetters = self.save_events(sorted_ruptures) return ((rgetter, self.src_filter, par) for rgetter in rgetters)
[docs] def get_rupture_getters(self): """ :returns: a list of RuptureGetters """ dstore = (self.datastore.parent if self.datastore.parent else self.datastore) hdf5cache = dstore.hdf5cache() with hdf5.File(hdf5cache, 'r+') as cache: if 'rupgeoms' not in cache: dstore.hdf5.copy('rupgeoms', cache) rgetters = get_rupture_getters( dstore, split=self.oqparam.concurrent_tasks, hdf5cache=hdf5cache) num_events = self.E if hasattr(self, 'E') else len(dstore['events']) num_ruptures = len(dstore['ruptures']) logging.info('Found {:,d} ruptures and {:,d} events' .format(num_ruptures, num_events)) if self.datastore.parent: self.datastore.parent.close() return rgetters
[docs] def agg_dicts(self, acc, result): """ :param acc: accumulator dictionary :param result: an AccumDict with events, ruptures, gmfs and hcurves """ try: eid2idx = self.eid2idx except AttributeError: # first call eid2idx = self.eid2idx = dict( zip(self.datastore['events']['eid'], range(self.E))) sav_mon = self.monitor('saving gmfs') agg_mon = self.monitor('aggregating hcurves') with sav_mon: data = result.pop('gmfdata') if len(data) == 0: return acc idxs = base.get_idxs(data, eid2idx) # this has to be fast data['eid'] = idxs # replace eid with idx self.datastore.extend('gmf_data/data', data) # it is important to save the number of bytes while the # computation is going, to see the progress update_nbytes(self.datastore, 'gmf_data/data', data) for sid, start, stop in result['indices']: self.indices[sid, 0].append(start + self.offset) self.indices[sid, 1].append(stop + self.offset) self.offset += len(data) if self.offset >= TWO32: raise RuntimeError( 'The gmf_data table has more than %d rows' % TWO32) imtls = self.oqparam.imtls with agg_mon: for key, poes in result.get('hcurves', {}).items(): r, sid, imt = str2rsi(key) array = acc[r].setdefault(sid, 0).array[imtls(imt), 0] array[:] = 1. - (1. - array) * (1. - poes) sav_mon.flush() agg_mon.flush() self.datastore.flush() return acc
[docs] def save_events(self, rup_array): """ :param rup_array: an array of ruptures with fields grp_id :returns: a list of RuptureGetters """ # this is very fast compared to saving the ruptures eids = rupture.get_eids( rup_array, self.samples_by_grp, self.num_rlzs_by_grp) self.E = len(eids) self.check_overflow() # check the number of events events = numpy.zeros(len(eids), rupture.events_dt) events['eid'] = eids self.eid2idx = eid2idx = dict(zip(events['eid'], range(self.E))) rgetters = self.get_rupture_getters() # build the associations eid -> rlz in parallel smap = parallel.Starmap(RuptureGetter.get_eid_rlz, ((rgetter,) for rgetter in rgetters), self.monitor('get_eid_rlz'), progress=logging.debug) for eid_rlz in smap: # fast: 30 million of events associated in 1 minute for eid, rlz in eid_rlz: events[eid2idx[eid]]['rlz'] = rlz self.datastore['events'] = events # fast too return rgetters
[docs] def check_overflow(self): """ Raise a ValueError if the number of sites is larger than 65,536 or the number of IMTs is larger than 256 or the number of ruptures is larger than 4,294,967,296. The limits are due to the numpy dtype used to store the GMFs (gmv_dt). They could be relaxed in the future. """ max_ = dict(events=TWO32, imts=2**8) E = getattr(self, 'E', 0) # 0 for non event based num_ = dict(events=E, imts=len(self.oqparam.imtls)) if self.sitecol: max_['sites'] = min(self.oqparam.max_num_sites, TWO32) num_['sites'] = len(self.sitecol) for var in max_: if num_[var] > max_[var]: raise ValueError( 'The event based calculator is restricted to ' '%d %s, got %d' % (max_[var], var, num_[var]))
[docs] def execute(self): oq = self.oqparam self.offset = 0 self.indices = collections.defaultdict(list) # sid, idx -> indices self.min_iml = self.get_min_iml(oq) param = self.param.copy() param.update( oqparam=oq, min_iml=self.min_iml, gmf=oq.ground_motion_fields, truncation_level=oq.truncation_level, ruptures_per_block=oq.ruptures_per_block, imtls=oq.imtls, filter_distance=oq.filter_distance, ses_per_logic_tree_path=oq.ses_per_logic_tree_path) if oq.hazard_calculation_id: # from ruptures assert oq.ground_motion_fields, 'must be True!' self.datastore.parent = datastore.read(oq.hazard_calculation_id) self.init_logic_tree(self.csm_info) iterargs = ((rgetter, self.src_filter, param) for rgetter in self.get_rupture_getters()) else: # from sources iterargs = self.from_sources(param) if oq.ground_motion_fields is False: return {} # call compute_gmfs in parallel acc = parallel.Starmap( self.core_task.__func__, iterargs, self.monitor() ).reduce(self.agg_dicts, self.zerodict()) if self.indices: N = len(self.sitecol.complete) logging.info('Saving gmf_data/indices') with self.monitor('saving gmf_data/indices', measuremem=True, autoflush=True): self.datastore['gmf_data/imts'] = ' '.join(oq.imtls) dset = self.datastore.create_dset( 'gmf_data/indices', hdf5.vuint32, shape=(N, 2), fillvalue=None) num_evs = self.datastore.create_dset( 'gmf_data/events_by_sid', U32, (N,)) for sid in self.sitecol.complete.sids: start = numpy.array(self.indices[sid, 0]) stop = numpy.array(self.indices[sid, 1]) dset[sid, 0] = start dset[sid, 1] = stop num_evs[sid] = (stop - start).sum() avg_events_by_sid = num_evs.value.sum() / N logging.info('Found ~%d GMVs per site', avg_events_by_sid) self.datastore.set_attrs( 'gmf_data', avg_events_by_sid=avg_events_by_sid, max_events_by_sid=num_evs.value.max()) elif oq.ground_motion_fields: raise RuntimeError('No GMFs were generated, perhaps they were ' 'all below the minimum_intensity threshold') return acc
[docs] def save_gmf_bytes(self): """Save the attribute nbytes in the gmf_data datasets""" ds = self.datastore for sm_id in ds['gmf_data']: ds.set_nbytes('gmf_data/' + sm_id) ds.set_nbytes('gmf_data')
[docs] def post_execute(self, result): oq = self.oqparam if not oq.ground_motion_fields: return N = len(self.sitecol.complete) L = len(oq.imtls.array) if result and oq.hazard_curves_from_gmfs: rlzs = self.rlzs_assoc.realizations # compute and save statistics; this is done in process and can # be very slow if there are thousands of realizations weights = [rlz.weight for rlz in rlzs] # NB: in the future we may want to save to individual hazard # curves if oq.individual_curves is set; for the moment we # save the statistical curves only hstats = oq.hazard_stats() pmaps = list(result.values()) if len(hstats): logging.info('Computing statistical hazard curves') if len(weights) != len(pmaps): # this should never happen, unless I break the # logic tree reduction mechanism during refactoring raise AssertionError('Expected %d pmaps, got %d' % (len(weights), len(pmaps))) for statname, stat in hstats: pmap = compute_pmap_stats(pmaps, [stat], weights, oq.imtls) arr = numpy.zeros((N, L), F32) for sid in pmap: arr[sid] = pmap[sid].array[:, 0] self.datastore['hcurves/' + statname] = arr if oq.poes: P = len(oq.poes) I = len(oq.imtls) self.datastore.create_dset( 'hmaps/' + statname, F32, (N, P * I)) self.datastore.set_attrs( 'hmaps/' + statname, nbytes=N * P * I * 4) hmap = calc.make_hmap(pmap, oq.imtls, oq.poes) ds = self.datastore['hmaps/' + statname] for sid in hmap: ds[sid] = hmap[sid].array[:, 0] if self.datastore.parent: self.datastore.parent.open('r') if 'gmf_data' in self.datastore: self.save_gmf_bytes() if oq.compare_with_classical: # compute classical curves export_dir = os.path.join(oq.export_dir, 'cl') if not os.path.exists(export_dir): os.makedirs(export_dir) oq.export_dir = export_dir # one could also set oq.number_of_logic_tree_samples = 0 self.cl = ClassicalCalculator(oq) # TODO: perhaps it is possible to avoid reprocessing the source # model, however usually this is quite fast and do not dominate # the computation self.cl.run(close=False) cl_mean_curves = get_mean_curves(self.cl.datastore) eb_mean_curves = get_mean_curves(self.datastore) rdiff, index = util.max_rel_diff_index( cl_mean_curves, eb_mean_curves) logging.warn('Relative difference with the classical ' 'mean curves: %d%% at site index %d', rdiff * 100, index)