# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# LICENSE
#
# Copyright (C) 2010-2025 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.
"""
Prototype of a 'Catalogue' class
"""
import csv
import numpy as np
from openquake.hazardlib.pmf import PMF
from openquake.hazardlib.geo.mesh import Mesh
from openquake.hazardlib.geo.utils import spherical_to_cartesian
from openquake.hmtk.seismicity.utils import (
    decimal_time,
    bootstrap_histogram_1D,
    bootstrap_histogram_2D,
)
[docs]class Catalogue(object):
    """
    General Catalogue Class
    """
    FLOAT_ATTRIBUTE_LIST = [
        "second",
        "timeError",
        "longitude",
        "latitude",
        "SemiMajor90",
        "SemiMinor90",
        "ErrorStrike",
        "depth",
        "depthError",
        "magnitude",
        "sigmaMagnitude",
    ]
    INT_ATTRIBUTE_LIST = ["year", "month", "day", "hour", "minute", "flag"]
    STRING_ATTRIBUTE_LIST = ["eventID", "Agency", "magnitudeType", "comment"]
    TOTAL_ATTRIBUTE_LIST = list(
        (set(FLOAT_ATTRIBUTE_LIST).union(set(INT_ATTRIBUTE_LIST))).union(
            set(STRING_ATTRIBUTE_LIST)
        )
    )
    SORTED_ATTRIBUTE_LIST = [
        "eventID",
        "Agency",
        "year",
        "month",
        "day",
        "hour",
        "minute",
        "second",
        "timeError",
        "longitude",
        "latitude",
        "SemiMajor90",
        "SemiMinor90",
        "ErrorStrike",
        "depth",
        "depthError",
        "magnitude",
        "sigmaMagnitude",
        "magnitudeType",
    ]
    def __init__(self):
        """
        Initialise the catalogue dictionary
        """
        self.data = {}
        self.end_year = None
        self.start_year = None
        self.processes = {
            "declustering": None,
            "completeness": None,
            "recurrence": None,
            "Poisson Tests": None,
        }
        for attribute in self.TOTAL_ATTRIBUTE_LIST:
            if attribute in self.FLOAT_ATTRIBUTE_LIST:
                self.data[attribute] = np.array([], dtype=float)
            elif attribute in self.INT_ATTRIBUTE_LIST:
                self.data[attribute] = np.array([], dtype=int)
            else:
                self.data[attribute] = []
        self.number_earthquakes = 0
[docs]    def get_number_events(self):
        return len(self.data["eventID"]) 
    def __len__(self):
        return self.get_number_events()
    def __str__(self):
        """
        Returns a shortened print of the catalogue
        """
        neq = self.get_number_events()
        if not neq:
            return "<Catalogue Object>No events"
        elif neq > 20:
            # Too many events to print, show 1st 10 and last 10
            row_set = ["<Catalogue Object>{:g} events".format(neq)]
            for i in range(10):
                row_set.append(self._get_row_str(i))
            row_set.append("...")
            for i in range(-10, 0, 1):
                row_set.append(self._get_row_str(i))
        else:
            # Show all events
            row_set = ["<Catalogue Object>{:g} events".format(neq)]
            for i in range(neq):
                row_set.append(self._get_row_str(i))
        return "\n".join(row_set)
    def _get_row_str(self, i):
        """
        Returns a string representation of the key information in a row
        """
        row_data = [
            "{:s}".format(self.data["eventID"][i]),
            "{:g}".format(self.data["year"][i]),
            "{:g}".format(self.data["month"][i]),
            "{:g}".format(self.data["day"][i]),
            "{:g}".format(self.data["hour"][i]),
            "{:g}".format(self.data["minute"][i]),
            "{:.1f}".format(self.data["second"][i]),
            "{:.3f}".format(self.data["longitude"][i]),
            "{:.3f}".format(self.data["latitude"][i]),
            "{:.1f}".format(self.data["depth"][i]),
            "{:.1f}".format(self.data["magnitude"][i]),
        ]
        return " ".join(row_data)
    def __getitem__(self, key):
        """
        If the key is provided as an int, return a data for that index,
        otherwise if it is a string then return the data column
        """
        if isinstance(key, int):
            # Gets the row specied
            row = []
            for attr in self.SORTED_ATTRIBUTE_LIST:
                if len(self.data[attr]):
                    row.append(self.data[attr][key])
                else:
                    # For empty columns just append None
                    row.append(None)
            return row
        elif isinstance(key, str):
            return self.data[key]
        else:
            raise ValueError("__getitem__ requires integer or string")
    def __iter__(self):
        """
        Iteration yields for each event a list of data
        """
        for i in range(len(self)):
            row = []
            for key in self.SORTED_ATTRIBUTE_LIST:
                if len(self.data[key]):
                    row.append(self.data[key][i])
                else:
                    # For empty columns just append None
                    row.append(None)
            yield row
[docs]    def add_event(self):
        raise NotImplementedError 
[docs]    def write_catalogue(self, output_file, key_list=SORTED_ATTRIBUTE_LIST):
        """
        Writes the catalogue to file using HTMK format (CSV).
        :param output_file:
            Name of the output file
        :param key_list:
            Optional list of attribute keys to be exported
        """
        with open(output_file, "w") as of:
            writer = csv.DictWriter(of, fieldnames=key_list)
            writer.writeheader()
            for i in range(self.get_number_events()):
                row_dict = {}
                for key in key_list:
                    if len(self.data[key]) > 0:
                        data = self.data[key][i]
                        if key in self.INT_ATTRIBUTE_LIST:
                            if np.isnan(data):
                                data = ""
                            else:
                                data = int(data)
                        if key in self.FLOAT_ATTRIBUTE_LIST:
                            if np.isnan(data):
                                data = ""
                            else:
                                data = float(data)
                    row_dict[key] = data
                writer.writerow(row_dict) 
[docs]    def load_to_array(self, keys):
        """
        This loads the data contained in the catalogue into a numpy array. The
        method works only for float data
        :param keys:
            A list of keys to be uploaded into the array
        :type list:
        """
        # Preallocate the numpy array
        data = np.empty((len(self.data[keys[0]]), len(keys)))
        for i in range(0, len(self.data[keys[0]])):
            for j, key in enumerate(keys):
                data[i, j] = self.data[key][i]
        return data 
[docs]    def load_from_array(self, keys, data_array):
        """
        This loads the data contained in an array into the catalogue object
        :param keys:
            A list of keys explaining the content of the columns in the array
        :type list:
        """
        if len(keys) != np.shape(data_array)[1]:
            raise ValueError("Key list does not match shape of array!")
        for i, key in enumerate(keys):
            if key in self.INT_ATTRIBUTE_LIST:
                self.data[key] = data_array[:, i].astype(int)
            else:
                self.data[key] = data_array[:, i]
            if key not in self.TOTAL_ATTRIBUTE_LIST:
                print("Key %s not a recognised catalogue attribute" % key)
        self.update_end_year() 
[docs]    @classmethod
    def make_from_dict(cls, data):
        cat = cls()
        cat.data = data
        cat.update_end_year()
        return cat 
[docs]    def update_end_year(self):
        """
        NOTE: To be called only when the catalogue is loaded (not when
        it is modified by declustering or completeness-based filtering)
        """
        self.end_year = np.max(self.data["year"]) 
[docs]    def update_start_year(self):
        """
        NOTE: To be called only when the catalogue is loaded (not when
        it is modified by declustering or completeness-based filtering)
        """
        self.start_year = np.min(self.data["year"]) 
[docs]    def catalogue_mt_filter(self, mt_table, flag=None):
        """
        Filter the catalogue using a magnitude-time table. The table has
        two columns and n-rows.
        :param nump.ndarray mt_table:
            Magnitude time table with n-rows where column 1 is year and column
            2 is magnitude
        """
        if flag is None:
            # No flag defined, therefore all events are initially valid
            flag = np.ones(self.get_number_events(), dtype=bool)
        for comp_val in mt_table:
            id0 = np.logical_and(
                self.data["year"].astype(float) < comp_val[0],
                self.data["magnitude"] < comp_val[1],
            )
            print(id0)
            flag[id0] = False
        if not np.all(flag):
            self.purge_catalogue(flag) 
[docs]    def get_bounding_box(self):
        """
        Returns the bounding box of the catalogue
        :returns: (West, East, South, North)
        """
        return (
            np.min(self.data["longitude"]),
            np.max(self.data["longitude"]),
            np.min(self.data["latitude"]),
            np.max(self.data["latitude"]),
        ) 
[docs]    def get_observed_mmax_sigma(self, default=None):
        """
        :returns: the sigma for the maximum observed magnitude
        """
        if not isinstance(self.data["sigmaMagnitude"], np.ndarray):
            obsmaxsig = default
        else:
            obsmaxsig = self.data["sigmaMagnitude"][
                np.argmax(self.data["magnitude"])
            ]
        return obsmaxsig 
[docs]    def get_decimal_time(self):
        """
        Returns the time of the catalogue as a decimal
        """
        return decimal_time(
            self.data["year"],
            self.data["month"],
            self.data["day"],
            self.data["hour"],
            self.data["minute"],
            self.data["second"],
        ) 
[docs]    def hypocentres_as_mesh(self):
        """
        Render the hypocentres to a nhlib.geo.mesh.Mesh object
        """
        return Mesh(
            self.data["longitude"], self.data["latitude"], self.data["depth"]
        ) 
[docs]    def hypocentres_to_cartesian(self):
        """
        Render the hypocentres to a cartesian array
        """
        return spherical_to_cartesian(
            self.data["longitude"], self.data["latitude"], self.data["depth"]
        ) 
[docs]    def sort_catalogue_chronologically(self):
        """
        Sorts the catalogue into chronological order
        """
        dec_time = self.get_decimal_time()
        idx = np.argsort(dec_time)
        if np.all((idx[1:] - idx[:-1]) > 0.0):
            # Catalogue was already in chronological order
            return
        self.select_catalogue_events(idx) 
[docs]    def purge_catalogue(self, flag_vector):
        """
        Purges present catalogue with invalid events defined by flag_vector
        :param numpy.ndarray flag_vector:
            Boolean vector showing if events are selected (True) or not (False)
        """
        id0 = np.where(flag_vector)[0]
        self.select_catalogue_events(id0)
        self.get_number_events() 
[docs]    def select_catalogue_events(self, id0):
        """
        Orders the events in the catalogue according to an indexing vector.
        :param np.ndarray id0:
            Pointer array indicating the locations of selected events
        """
        for key in self.data:
            if (
                isinstance(self.data[key], np.ndarray)
                and len(self.data[key]) > 0
            ):
                # Dictionary element is numpy array - use logical indexing
                self.data[key] = self.data[key][id0]
            elif isinstance(self.data[key], list) and len(self.data[key]) > 0:
                # Dictionary element is list
                self.data[key] = [self.data[key][iloc] for iloc in id0]
            else:
                continue 
[docs]    def get_depth_distribution(
        self, depth_bins, normalisation=False, bootstrap=None
    ):
        """
        Gets the depth distribution of the earthquake catalogue to return a
        single histogram. Depths may be normalised. If uncertainties are found
        in the catalogue the distrbution may be bootstrap sampled
        :param numpy.ndarray depth_bins:
             getBin edges for the depths
        :param bool normalisation:
            Choose to normalise the results such that the total contributions
            sum to 1.0 (True) or not (False)
        :param int bootstrap:
            Number of bootstrap samples
        :returns:
            Histogram of depth values
        """
        if len(self.data["depth"]) == 0:
            # If depth information is missing
            raise ValueError("Depths missing in catalogue")
        if len(self.data["depthError"]) == 0:
            self.data["depthError"] = np.zeros(
                self.get_number_events(), dtype=float
            )
        return bootstrap_histogram_1D(
            self.data["depth"],
            depth_bins,
            self.data["depthError"],
            normalisation=normalisation,
            number_bootstraps=bootstrap,
            boundaries=(0.0, None),
        ) 
[docs]    def get_depth_pmf(self, depth_bins, default_depth=5.0, bootstrap=None):
        """
        Returns the depth distribution of the catalogue as a probability mass
        function
        """
        if len(self.data["depth"]) == 0:
            # If depth information is missing
            return PMF([(1.0, default_depth)])
        # Get the depth distribution
        depth_hist = self.get_depth_distribution(
            depth_bins, normalisation=True, bootstrap=bootstrap
        )
        # If the histogram does not sum to 1.0 then remove the difference
        # from the lowest bin
        depth_hist = np.around(depth_hist, 3)
        while depth_hist.sum() - 1.0:
            depth_hist[-1] -= depth_hist.sum() - 1.0
            depth_hist = np.around(depth_hist, 3)
        pmf_list = []
        for iloc, prob in enumerate(depth_hist):
            pmf_list.append(
                (prob, (depth_bins[iloc] + depth_bins[iloc + 1]) / 2.0)
            )
        return PMF(pmf_list) 
[docs]    def get_magnitude_depth_distribution(
        self, magnitude_bins, depth_bins, normalisation=False, bootstrap=None
    ):
        """
        Returns a 2-D magnitude-depth histogram for the catalogue
        :param numpy.ndarray magnitude_bins:
             Bin edges for the magnitudes
        :param numpy.ndarray depth_bins:
            Bin edges for the depths
        :param bool normalisation:
            Choose to normalise the results such that the total contributions
            sum to 1.0 (True) or not (False)
        :param int bootstrap:
            Number of bootstrap samples
        :returns:
            2D histogram of events in magnitude-depth bins
        """
        if len(self.data["depth"]) == 0:
            # If depth information is missing
            raise ValueError("Depths missing in catalogue")
        if len(self.data["depthError"]) == 0:
            self.data["depthError"] = np.zeros(
                self.get_number_events(), dtype=float
            )
        if len(self.data["sigmaMagnitude"]) == 0:
            self.data["sigmaMagnitude"] = np.zeros(
                self.get_number_events(), dtype=float
            )
        return bootstrap_histogram_2D(
            self.data["magnitude"],
            self.data["depth"],
            magnitude_bins,
            depth_bins,
            boundaries=[(0.0, None), (None, None)],
            xsigma=self.data["sigmaMagnitude"],
            ysigma=self.data["depthError"],
            normalisation=normalisation,
            number_bootstraps=bootstrap,
        ) 
[docs]    def get_magnitude_time_distribution(
        self, magnitude_bins, time_bins, normalisation=False, bootstrap=None
    ):
        """
        Returns a 2-D histogram indicating the number of earthquakes in a
        set of time-magnitude bins. Time is in decimal years!
        :param numpy.ndarray magnitude_bins:
             Bin edges for the magnitudes
        :param numpy.ndarray time_bins:
            Bin edges for the times
        :param bool normalisation:
            Choose to normalise the results such that the total contributions
            sum to 1.0 (True) or not (False)
        :param int bootstrap:
            Number of bootstrap samples
        :returns:
            2D histogram of events in magnitude-year bins
        """
        return bootstrap_histogram_2D(
            self.get_decimal_time(),
            self.data["magnitude"],
            time_bins,
            magnitude_bins,
            xsigma=np.zeros(self.get_number_events()),
            ysigma=self.data["sigmaMagnitude"],
            normalisation=normalisation,
            number_bootstraps=bootstrap,
        ) 
[docs]    def concatenate(self, catalogue):
        """
        This method attaches one catalogue to the current one
        :parameter catalogue:
            An instance of :class:`htmk.seismicity.catalogue.Catalogue`
        """
        atts = getattr(self, "data")
        attn = getattr(catalogue, "data")
        data = _merge_data(atts, attn)
        if data is not None:
            setattr(self, "data", data)
            for attrib in vars(self):
                atts = getattr(self, attrib)
                attn = getattr(catalogue, attrib)
                if attrib == "end_year":
                    setattr(self, attrib, max(atts, attn))
                elif attrib == "start_year":
                    setattr(self, attrib, min(atts, attn))
                elif attrib == "data":
                    pass
                elif attrib == "number_earthquakes":
                    setattr(self, attrib, atts + attn)
                elif attrib == "processes":
                    if atts != attn:
                        raise ValueError(
                            "The catalogues cannot be merged"
                            + " since the they have"
                            + " a different processing history"
                        )
                else:
                    raise ValueError("unknown attribute: %s" % attrib)
        self.sort_catalogue_chronologically()  
def _merge_data(dat1, dat2):
    """
    Merge two data dictionaries containing catalogue data
    :parameter dictionary dat1:
        Catalogue data dictionary
    :parameter dictionary dat2:
        Catalogue data dictionary
    :returns:
        A catalogue data dictionary containing the information originally
        included in dat1 and dat2
    """
    cnt = 0
    for key in dat1:
        flg1 = len(dat1[key]) > 0
        flg2 = len(dat2[key]) > 0
        if flg1 != flg2:
            cnt += 1
    if cnt:
        raise Warning("Cannot merge catalogues with different" + " attributes")
        return None
    else:
        for key in dat1:
            if isinstance(dat1[key], np.ndarray):
                dat1[key] = np.concatenate((dat1[key], dat2[key]), axis=0)
            elif isinstance(dat1[key], list):
                dat1[key] += dat2[key]
            else:
                raise ValueError("Unknown type")
        return dat1