# coding: utf-8
# The Hazard Library
# Copyright (C) 2012-2025 GEM Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
Module :mod:`openquake.hazardlib.source.rupture` defines classes
:class:`BaseRupture` and its subclasses
:class:`NonParametricProbabilisticRupture` and
:class:`ParametricProbabilisticRupture`
"""
import abc
import numpy
import math
import logging
import itertools
import json
from openquake.baselib import general, hdf5
from openquake.hazardlib import geo, site, scalerel
from openquake.hazardlib.geo.nodalplane import NodalPlane
from openquake.hazardlib.geo.mesh import Mesh, RectangularMesh
from openquake.hazardlib.geo.surface.base import surface_to_arrays, to_arrays
from openquake.hazardlib.geo.point import Point
from openquake.hazardlib.geo.geodetic import geodetic_distance
from openquake.hazardlib.near_fault import (
    get_plane_equation, projection_pp, directp, average_s_rad, isochone_ratio)
from openquake.hazardlib.geo.surface import BaseSurface, PlanarSurface
U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
I64 = numpy.int64
F32 = numpy.float32
F64 = numpy.float64
TWO16 = 2 ** 16
TWO24 = 2 ** 24
TWO30 = 2 ** 30
TWO32 = 2 ** 32
MSR = scalerel._get_available_class(scalerel.BaseMSR)
pmf_dt = numpy.dtype([
    ('prob', float),
    ('occ', U32)])
events_dt = numpy.dtype([
    ('id', U32),
    ('rup_id', I64),
    ('rlz_id', U16)])
rup_dt = numpy.dtype([
    ('seed', U32),
    ('mag', F32),
    ('rake', F32),
    ('lon', F32),
    ('lat', F32),
    ('dep', F32),
    ('multiplicity', U32),
    ('trt', hdf5.vstr),
    ('kind', hdf5.vstr),
    ('mesh', hdf5.vstr),
    ('extra', hdf5.vstr)])
rupture_dt = numpy.dtype([
    ('id', I64),
    ('seed', I64),
    ('source_id', U32),
    ('trt_smr', U32),
    ('code', U8),
    ('n_occ', U32),
    ('mag', F32),
    ('rake', F32),
    ('occurrence_rate', F32),
    ('minlon', F32),
    ('minlat', F32),
    ('maxlon', F32),
    ('maxlat', F32),
    ('hypo', (F32, 3)),
    ('geom_id', U32),
    ('nsites', U32),
    ('e0', U32),
    ('model', '<S3')])
code2cls = {}
[docs]def to_csv_array(ebruptures):
    """
    :param ebruptures: a list of EBRuptures
    :returns: an array suitable for serialization in CSV
    """
    if not code2cls:
        code2cls.update(BaseRupture.init())
    arr = numpy.zeros(len(ebruptures), rup_dt)
    for rec, ebr in zip(arr, ebruptures):
        rup = ebr.rupture
        # s0=number of multi surfaces, s1=number of rows, s2=number of columns
        arrays = surface_to_arrays(rup.surface)  # shape (s0, 3, s1, s2)
        rec['seed'] = ebr.seed
        rec['mag'] = rup.mag
        rec['rake'] = rup.rake
        rec['lon'] = rup.hypocenter.x
        rec['lat'] = rup.hypocenter.y
        rec['dep'] = rup.hypocenter.z
        rec['multiplicity'] = rup.multiplicity
        rec['trt'] = rup.tectonic_region_type
        rec['kind'] = ' '.join(cls.__name__ for cls in code2cls[rup.code])
        rec['mesh'] = json.dumps(
            [[[[float5(z) for z in y] for y in x] for x in array]
             for array in arrays])
        extra = {}
        if hasattr(rup, 'probs_occur'):
            extra['probs_occur'] = rup.probs_occur
        else:
            extra['occurrence_rate'] = rup.occurrence_rate
        if hasattr(rup, 'weight'):
            extra['weight'] = rup.weight
        _fixfloat32(extra)
        rec['extra'] = json.dumps(extra)
    return arr 
[docs]def get_ebr(rec, geom, trt):
    """
    Convert a rupture record plus geometry into an EBRupture instance
    """
    # rec: a dictionary or a record
    # geom: if any, an array of floats32 convertible into a mesh
    # NB: not implemented: rupture_slip_direction
    if not code2cls:
        code2cls.update(BaseRupture.init())
    # build surface
    arrays = to_arrays(geom)
    mesh = arrays[0]
    rupture_cls, surface_cls = code2cls[rec['code']]
    surface = object.__new__(surface_cls)
    if surface_cls is geo.PlanarSurface:
        surface = geo.PlanarSurface.from_array(mesh[:, 0, :])
    elif surface_cls is geo.MultiSurface:
        if all(array.shape == (3, 1, 4) for array in arrays):
            # for PlanarSurfaces each array has shape (3, 1, 4)
            surface.__init__([
                geo.PlanarSurface.from_array(array[:, 0, :])
                for array in arrays])
        else:
            # assume KiteSurfaces
            surface.__init__([geo.KiteSurface(RectangularMesh(*array))
                              for array in arrays])
    elif surface_cls is geo.GriddedSurface:
        # fault surface, strike and dip will be computed
        surface.strike = surface.dip = None
        surface.mesh = Mesh(*mesh)
    else:
        # fault surface, strike and dip will be computed
        surface.strike = surface.dip = None
        surface.__init__(RectangularMesh(*mesh))
    # build rupture
    rupture = object.__new__(rupture_cls)
    rupture.seed = rec['seed']
    rupture.surface = surface
    rupture.mag = rec['mag']
    rupture.rake = rec['rake']
    rupture.hypocenter = geo.Point(*rec['hypo'])
    rupture.occurrence_rate = rec['occurrence_rate']
    try:
        rupture.probs_occur = rec['probs_occur']
    except (KeyError, ValueError):  # rec can be a numpy record
        pass
    rupture.tectonic_region_type = trt
    rupture.multiplicity = rec['n_occ']
    # build EBRupture
    ebr = EBRupture(rupture, rec['source_id'], rec['trt_smr'],
                    rec['n_occ'], rec['id'] % TWO30, rec['e0'])
    ebr.seed = rec['seed']
    return ebr 
[docs]def float5(x):
    # a float with 5 digits
    return round(float(x), 5) 
def _fixfloat32(dic):
    # work around a TOML/numpy issue
    for k, v in dic.items():
        if isinstance(v, F32):
            dic[k] = float5(v)
        elif isinstance(v, tuple):
            dic[k] = [float5(x) for x in v]
        elif isinstance(v, numpy.ndarray):
            if len(v.shape) == 3:  # 3D array
                dic[k] = [[[float5(z) for z in y] for y in x] for x in v]
            elif len(v.shape) == 2:  # 2D array
                dic[k] = [[float5(y) for y in x] for x in v]
            elif len(v.shape) == 1:  # 1D array
                dic[k] = [float5(x) for x in v]
            else:
                raise NotImplementedError
[docs]def to_checksum8(cls1, cls2):
    """
    Convert a pair of classes into a numeric code (uint8)
    """
    names = '%s,%s' % (cls1.__name__, cls2.__name__)
    return sum(map(ord, names)) % 256 
[docs]class BaseRupture(metaclass=abc.ABCMeta):
    """
    Rupture object represents a single earthquake rupture.
    :param mag:
        Magnitude of the rupture.
    :param rake:
        Rake value of the rupture.
        See :class:`~openquake.hazardlib.geo.nodalplane.NodalPlane`.
    :param tectonic_region_type:
        Rupture's tectonic regime. One of constants
        in :class:`openquake.hazardlib.const.TRT`.
    :param hypocenter:
        A :class:`~openquake.hazardlib.geo.point.Point`, rupture's hypocenter.
    :param surface:
        An instance of subclass of
        :class:`~openquake.hazardlib.geo.surface.base.BaseSurface`.
        Object representing the rupture surface geometry.
    :param rupture_slip_direction:
        Angle describing rupture propagation direction in decimal degrees.
    :raises ValueError:
        If magnitude value is not positive, or tectonic region type is unknown.
    NB: if you want to convert the rupture into XML, you should set the
    attribute surface_nodes to an appropriate value.
    """
    _code = {}
[docs]    @classmethod
    def init(cls):
        """
        Initialize the class dictionary `._code` by encoding the
        bidirectional correspondence between an integer in the range 0..255
        (the code) and a pair of classes (rupture_class, surface_class).
        This is useful when serializing the rupture to and from HDF5.
        :returns: {code: pair of classes}
        """
        rupture_classes = [BaseRupture] + list(
            general.gen_subclasses(BaseRupture))
        surface_classes = list(general.gen_subclasses(BaseSurface))
        code2cls = {}
        BaseRupture.str2code = {}
        for rup, sur in itertools.product(rupture_classes, surface_classes):
            chk = to_checksum8(rup, sur)
            if chk in code2cls and code2cls[chk] != (rup, sur):
                raise ValueError('Non-unique checksum %d for %s, %s' %
                                 (chk, rup, sur))
            cls._code[rup, sur] = chk
            code2cls[chk] = rup, sur
            BaseRupture.str2code['%s %s' % (rup.__name__, sur.__name__)] = chk
        return code2cls 
    def __init__(self, mag, rake, tectonic_region_type, hypocenter,
                 surface, rupture_slip_direction=None, weight=None):
        if not mag > 0:
            raise ValueError('magnitude must be positive')
        NodalPlane.check_rake(rake)
        self.tectonic_region_type = tectonic_region_type
        self.rake = rake
        self.mag = mag
        self.hypocenter = hypocenter
        self.surface = surface
        self.rupture_slip_direction = rupture_slip_direction
        self.ruid = None
    @property
    def hypo_depth(self):
        """Returns the hypocentral depth"""
        return self.hypocenter.z
    @property
    def code(self):
        """Returns the code (integer in the range 0 .. 255) of the rupture"""
        return self._code[self.__class__, self.surface.__class__]
[docs]    def size(self):
        """
        Dummy method for compatibility with the RuptureContext.
        :returns: 1
        """
        return 1 
[docs]    def sample_number_of_occurrences(self, n, rng):
        """
        Randomly sample number of occurrences from temporal occurrence model
        probability distribution.
        .. note::
            This method is using random numbers. In order to reproduce the
            same results numpy random numbers generator needs to be seeded, see
            http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html
        :returns:
            numpy array of size n with number of rupture occurrences
        """
        raise NotImplementedError  
[docs]class NonParametricProbabilisticRupture(BaseRupture):
    """
    Probabilistic rupture for which the probability distribution for rupture
    occurrence is described through a generic probability mass function.
    :param pmf:
        Instance of :class:`openquake.hazardlib.pmf.PMF`. Values in the
        abscissae represent number of rupture occurrences (in increasing order,
        staring from 0) and values in the ordinates represent associated
        probabilities. Example: if, for a given time span, a rupture has
        probability ``0.8`` to not occurr, ``0.15`` to occur once, and
        ``0.05`` to occur twice, the ``pmf`` can be defined as ::
          pmf = PMF([(0.8, 0), (0.15, 1), 0.05, 2)])
    :raises ValueError:
        If number of ruptures in ``pmf`` do not start from 0, are not defined
        in increasing order, and if they are not defined with unit step
    """
    def __init__(self, mag, rake, tectonic_region_type, hypocenter, surface,
                 pmf, rupture_slip_direction=None, weight=None):
        occ = numpy.array([occ for (prob, occ) in pmf.data])
        if not occ[0] == 0:
            raise ValueError('minimum number of ruptures must be zero')
        if not numpy.all(numpy.sort(occ) == occ):
            raise ValueError(
                'numbers of ruptures must be defined in increasing order')
        if not numpy.all(numpy.diff(occ) == 1):
            raise ValueError(
                'numbers of ruptures must be defined with unit step')
        super().__init__(
            mag, rake, tectonic_region_type, hypocenter, surface,
            rupture_slip_direction, weight)
        # an array of probabilities with sum 1
        self.probs_occur = numpy.array([prob for (prob, occ) in pmf.data])
        if weight is not None:
            self.weight = weight
[docs]    def sample_number_of_occurrences(self, n, rng):
        """
        See :meth:`superclass method
        <.rupture.BaseRupture.sample_number_of_occurrences>`
        for spec of input and result values.
        Uses 'Inverse Transform Sampling' method.
        """
        # compute cdf from pmf
        cdf = numpy.cumsum(self.probs_occur)
        n_occ = numpy.digitize(rng.random(n), cdf)
        return n_occ  
[docs]class ParametricProbabilisticRupture(BaseRupture):
    """
    :class:`Rupture` associated with an occurrence rate and a temporal
    occurrence model.
    :param occurrence_rate:
        Number of times rupture happens per year.
    :param temporal_occurrence_model:
        Temporal occurrence model assigned for this rupture. Should
        be an instance of :class:`openquake.hazardlib.tom.PoissonTOM`.
    :raises ValueError:
        If occurrence rate is not positive.
    """
    def __init__(self, mag, rake, tectonic_region_type, hypocenter, surface,
                 occurrence_rate, temporal_occurrence_model,
                 rupture_slip_direction=None):
        if not occurrence_rate > 0:
            raise ValueError('occurrence rate must be positive')
        super().__init__(
            mag, rake, tectonic_region_type, hypocenter, surface,
            rupture_slip_direction)
        self.temporal_occurrence_model = temporal_occurrence_model
        self.occurrence_rate = occurrence_rate
[docs]    def get_probability_one_or_more_occurrences(self):
        """
        Return the probability of this rupture to occur one or more times.
        Uses
        :meth:`~openquake.hazardlib.tom.PoissonTOM.get_probability_one_or_more_occurrences`
        of an assigned temporal occurrence model.
        """
        tom = self.temporal_occurrence_model
        rate = self.occurrence_rate
        return tom.get_probability_one_or_more_occurrences(rate) 
[docs]    def get_probability_one_occurrence(self):
        """
        Return the probability of this rupture to occur exactly one time.
        Uses :meth:
        `openquake.hazardlib.tom.PoissonTOM.get_probability_n_occurrences`
        of an assigned temporal occurrence model.
        """
        tom = self.temporal_occurrence_model
        rate = self.occurrence_rate
        return tom.get_probability_n_occurrences(rate, 1) 
[docs]    def sample_number_of_occurrences(self, n, rng):
        """
        Draw a random sample from the distribution and return a number
        of events to occur as an array of integers of size n.
        Uses :meth:
        `openquake.hazardlib.tom.PoissonTOM.sample_number_of_occurrences`
        of an assigned temporal occurrence model.
        """
        r = self.occurrence_rate * self.temporal_occurrence_model.time_span
        return rng.poisson(r, n) 
[docs]    def get_dppvalue(self, site):
        """
        Get the directivity prediction value, DPP at
        a given site as described in Spudich et al. (2013).
        :param site:
            :class:`~openquake.hazardlib.geo.point.Point` object
            representing the location of the target site
        :returns:
            A float number, directivity prediction value (DPP).
        """
        origin = self.surface.get_resampled_top_edge()[0]
        dpp_multi = []
        index_patch = self.surface.hypocentre_patch_index(
            self.hypocenter, self.surface.get_resampled_top_edge(),
            self.surface.mesh.depths[0][0], self.surface.mesh.depths[-1][0],
            self.surface.get_dip())
        idx_nxtp = True
        hypocenter = self.hypocenter
        while idx_nxtp:
            # E Plane Calculation
            p0, p1, p2, p3 = self.surface.get_fault_patch_vertices(
                self.surface.get_resampled_top_edge(),
                self.surface.mesh.depths[0][0],
                self.surface.mesh.depths[-1][0],
                self.surface.get_dip(), index_patch=index_patch)
            [normal, dist_to_plane] = get_plane_equation(
                p0, p1, p2, origin)
            pp = projection_pp(site, normal, dist_to_plane, origin)
            pd, e, idx_nxtp = directp(
                p0, p1, p2, p3, hypocenter, origin, pp)
            pd_geo = origin.point_at(
                (pd[0] ** 2 + pd[1] ** 2) ** 0.5, -pd[2],
                numpy.degrees(math.atan2(pd[0], pd[1])))
            # determine the lower bound of E path value
            f1 = geodetic_distance(p0.longitude,
                                   p0.latitude,
                                   p1.longitude,
                                   p1.latitude)
            f2 = geodetic_distance(p2.longitude,
                                   p2.latitude,
                                   p3.longitude,
                                   p3.latitude)
            if f1 > f2:
                f = f1
            else:
                f = f2
            fs, rd, r_hyp = average_s_rad(site, hypocenter, origin,
                                          pp, normal, dist_to_plane, e, p0,
                                          p1, self.rupture_slip_direction)
            cprime = isochone_ratio(e, rd, r_hyp)
            dpp_exp = cprime * numpy.maximum(e, 0.1 * f) *\
                
numpy.maximum(fs, 0.2)
            dpp_multi.append(dpp_exp)
            # check if go through the next patch of the fault
            index_patch = index_patch + 1
            if (len(self.surface.get_resampled_top_edge())
                <= 2) and (index_patch >=
                           len(self.surface.get_resampled_top_edge())):
                idx_nxtp = False
            elif index_patch >= len(self.surface.get_resampled_top_edge()):
                idx_nxtp = False
            elif idx_nxtp:
                hypocenter = pd_geo
                idx_nxtp = True
        # calculate DPP value of the site.
        dpp = numpy.log(numpy.sum(dpp_multi))
        return dpp 
[docs]    def get_cdppvalue(self, target, buf=1.0, delta=0.01, space=2.):
        """
        Get the directivity prediction value, centered DPP(cdpp) at
        a given site as described in Spudich et al. (2013), and this cdpp is
        used in Chiou and Young (2014) GMPE for near-fault directivity
        term prediction.
        :param target_site:
            A mesh object representing the location of the target sites.
        :param buf:
            A buffer distance in km to extend the mesh borders
        :param delta:
            The distance between two adjacent points in the mesh
        :param space:
            The tolerance for the distance of the sites (default 2 km)
        :returns:
            The centered directivity prediction value of Chiou and Young
        """
        min_lon, max_lon, max_lat, min_lat = self.surface.get_bounding_box()
        min_lon -= buf
        max_lon += buf
        min_lat -= buf
        max_lat += buf
        lons = numpy.arange(min_lon, max_lon + delta, delta)
        # ex shape (233,)
        lats = numpy.arange(min_lat, max_lat + delta, delta)
        # ex shape (204,)
        mesh = RectangularMesh(*numpy.meshgrid(lons, lats))
        mesh_rup = self.surface.get_min_distance(mesh).reshape(mesh.shape)
        # ex shape (204, 233)
        target_rup = self.surface.get_min_distance(target)
        # ex shape (2,)
        cdpp = numpy.zeros_like(target.lons)
        for i, (target_lon, target_lat) in enumerate(
                zip(target.lons, target.lats)):
            # indices around target_rup[i]
            around = (mesh_rup <= target_rup[i] + space) & (
                mesh_rup >= target_rup[i] - space)
            dpp_target = self.get_dppvalue(Point(target_lon, target_lat))
            dpp_mean = numpy.mean(
                [self.get_dppvalue(Point(lon, lat))
                 for lon, lat in zip(mesh.lons[around], mesh.lats[around])])
            cdpp[i] = dpp_target - dpp_mean
        return cdpp  
[docs]class PointSurface:
    """
    A fake surface used in PointRuptures.
    """
    def __init__(self, hypocenter):
        self.hypocenter = hypocenter
[docs]    def get_strike(self):
        return 0 
[docs]    def get_dip(self):
        return 0 
[docs]    def get_top_edge_depth(self):
        return self.hypocenter.depth 
[docs]    def get_width(self):
        return 0 
[docs]    def get_closest_points(self, mesh):
        """
        :returns: N times the hypocenter if N is the number of points
        """
        N = len(mesh)
        lons = numpy.full(N, self.hypocenter.x)
        lats = numpy.full(N, self.hypocenter.y)
        deps = numpy.full(N, self.hypocenter.z)
        return Mesh(lons, lats, deps) 
[docs]    def get_min_distance(self, mesh):
        """
        :returns: the distance from the hypocenter to the mesh
        """
        return self.hypocenter.distance_to_mesh(mesh).min() 
    def __bool__(self):
        return False 
[docs]class PointRupture(ParametricProbabilisticRupture):
    """
    A rupture coming from a far away PointSource, so that the finite
    size effects can be neglected.
    """
    def __init__(self, mag, tectonic_region_type, hypocenter,
                 occurrence_rate, temporal_occurrence_model, zbot=0):
        self.mag = mag
        self.tectonic_region_type = tectonic_region_type
        self.hypocenter = hypocenter
        self.occurrence_rate = occurrence_rate
        self.temporal_occurrence_model = temporal_occurrence_model
        self.surface = PointSurface(hypocenter)
        self.rake = 0
        self.dip = 0
        self.strike = 0
        self.zbot = zbot  # bottom edge depth, used in Campbell-Bozorgnia 
[docs]def get_geom(surface, is_from_fault_source, is_multi_surface,
             is_gridded_surface):
    """
    The following fields can be interpreted different ways,
    depending on the value of `is_from_fault_source`. If
    `is_from_fault_source` is True, each of these fields should
    contain a 2D numpy array (all of the same shape). Each triple
    of (lon, lat, depth) for a given index represents the node of
    a rectangular mesh. If `is_from_fault_source` is False, each
    of these fields should contain a sequence (tuple, list, or
    numpy array, for example) of 4 values. In order, the triples
    of (lon, lat, depth) represent top left, top right, bottom
    left, and bottom right corners of the the rupture's planar
    surface. Update: There is now a third case. If the rupture
    originated from a characteristic fault source with a
    multi-planar-surface geometry, `lons`, `lats`, and `depths`
    will contain one or more sets of 4 points, similar to how
    planar surface geometry is stored (see above).
    :param surface: a Surface instance
    :param is_from_fault_source: a boolean
    :param is_multi_surface: a boolean
    """
    if is_from_fault_source:
        # for simple and complex fault sources,
        # rupture surface geometry is represented by a mesh
        surf_mesh = surface.mesh
        lons = surf_mesh.lons
        lats = surf_mesh.lats
        depths = surf_mesh.depths
    else:
        if is_multi_surface:
            # `list` of
            # openquake.hazardlib.geo.surface.planar.PlanarSurface
            # objects:
            surfaces = surface.surfaces
            # lons, lats, and depths are arrays with len == 4*N,
            # where N is the number of surfaces in the
            # multisurface for each `corner_*`, the ordering is:
            #   - top left
            #   - top right
            #   - bottom left
            #   - bottom right
            lons = numpy.concatenate([x.corner_lons for x in surfaces])
            lats = numpy.concatenate([x.corner_lats for x in surfaces])
            depths = numpy.concatenate([x.corner_depths for x in surfaces])
        elif is_gridded_surface:
            # the surface mesh has shape (1, N)
            lons = surface.mesh.lons[0]
            lats = surface.mesh.lats[0]
            depths = surface.mesh.depths[0]
        else:
            # For area or point source,
            # rupture geometry is represented by a planar surface,
            # defined by 3D corner points
            lons = numpy.zeros((4))
            lats = numpy.zeros((4))
            depths = numpy.zeros((4))
            # NOTE: It is important to maintain the order of these
            # corner points. TODO: check the ordering
            for i, corner in enumerate((surface.top_left,
                                        surface.top_right,
                                        surface.bottom_left,
                                        surface.bottom_right)):
                lons[i] = corner.longitude
                lats[i] = corner.latitude
                depths[i] = corner.depth
    return lons, lats, depths 
[docs]class ExportedRupture(object):
    """
    Simplified Rupture class with attributes rupid, events_by_ses, indices
    and others, used in export.
    :param rupid: rupture ID
    :param events_by_ses: dictionary ses_idx -> event records
    :param indices: site indices
    """
    def __init__(self, rupid, n_occ, events_by_ses, indices=None):
        self.rupid = rupid
        self.n_occ = n_occ
        self.events_by_ses = events_by_ses
        self.indices = indices 
[docs]class EBRupture(object):
    """
    An event based rupture. It is a wrapper over a hazardlib rupture
    object.
    :param rupture: the underlying rupture
    :param str source_id: ID of the source that generated the rupture
    :param int trt_smr: an integer describing TRT and source model realization
    :param int n_occ: number of occurrences of the rupture
    :param int e0: initial event ID (default 0)
    :param bool scenario: True for scenario ruptures, default False
    """
    seed = 'NA'  # set by the engine
    def __init__(self, rupture, source_id=0, trt_smr=0, n_occ=1, id=0,
                 e0=0, seed=42):
        self.rupture = rupture
        self.source_id = source_id
        self.trt_smr = trt_smr
        self.n_occ = n_occ
        self.id = numpy.int64(source_id) * TWO30 + id
        self.e0 = e0
        self.seed = seed
    @property
    def tectonic_region_type(self):
        return self.rupture.tectonic_region_type
    @property
    def mag(self):
        return self.rupture.mag
[docs]    def get_eids(self):
        """
        :returns: an array of event IDs
        """
        return numpy.arange(self.n_occ, dtype=U32) 
    def __repr__(self):
        return '<%s %d[%d]>' % (
            self.__class__.__name__, self.id, self.n_occ) 
[docs]def get_eid_rlz(rec, rlzs, scenario):
    """
    :param rlzs: an array of realization indices
    :param scenario: if true distribute the rlzs evenly else randomly
    :returns: two arrays (eid, rlz)
    """
    e0 = rec['e0']
    n = rec['n_occ']
    eid = numpy.arange(e0, e0 + n, dtype=U32)
    if scenario:
        # the rlzs are distributed evenly
        rlz = rlzs[numpy.arange(rec['n_occ']) // (n // len(rlzs))]
    else:
        # event_based: the rlzs are distributed randomly
        rlz = general.random_choice(rlzs, n, 0, rec['seed'])
    return eid, rlz 
[docs]def get_events(recs, rlzs, scenario):
    """
    Build the associations event_id -> rlz_id for each rup_id.
    :returns: a structured array with fields ('id', 'rup_id', 'rlz_id')
    """
    n_occ = sum(rec['n_occ'] for rec in recs)
    out = numpy.zeros(n_occ, events_dt)
    start = 0
    for rec in recs:
        n = rec['n_occ']
        stop = start + n
        slc = out[start:stop]
        eid, rlz = get_eid_rlz(rec, rlzs, scenario)
        slc['id'] = eid
        slc['rlz_id'] = rlz
        slc['rup_id'] = rec['id']
        start = stop
    return out 
[docs]class RuptureProxy(object):
    """
    A proxy for a rupture record.
    :param rec: a record with the rupture parameters
    """
    def __init__(self, rec):
        self.rec = rec
    def __getitem__(self, name):
        return self.rec[name]
    # NB: requires the .geom attribute to be set
[docs]    def to_ebr(self, trt):
        """
        :returns: EBRupture instance associated to the underlying rupture
        """
        return get_ebr(self.rec, self.geom, trt) 
    def __repr__(self):
        return '<%s#%d[%s], w=%d>' % (
            self.__class__.__name__, self['id'],
            self['source_id'], self['n_occ']) 
[docs]def get_ruptures_aw(fname_csv):
    """
    Read ruptures in CSV format and return an ArrayWrapper.
    :param fname_csv: path to the CSV file
    """
    if not BaseRupture._code:
        BaseRupture.init()  # initialize rupture codes
    code = BaseRupture.str2code
    aw = hdf5.read_csv(fname_csv, {n: rup_dt[n] for n in rup_dt.names})
    rups = []
    geoms = []
    n_occ = 1
    for u, row in enumerate(aw.array):
        hypo = row['lon'], row['lat'], row['dep']
        dic = json.loads(row['extra'])
        meshes = [F32(m) for m in json.loads(row['mesh'])]  # 3D arrays
        num_surfaces = len(meshes)
        shapes = []
        points = []
        minlons = []
        maxlons = []
        minlats = []
        maxlats = []
        for mesh in meshes:
            shapes.extend(mesh.shape[1:])
            points.extend(mesh.flatten())  # lons + lats + deps
            minlons.append(mesh[0].min())
            minlats.append(mesh[1].min())
            maxlons.append(mesh[0].max())
            maxlats.append(mesh[1].max())
        rec = numpy.zeros(1, rupture_dt)[0]
        rec['seed'] = row['seed']
        rec['minlon'] = minlon = min(minlons)
        rec['minlat'] = minlat = min(minlats)
        rec['maxlon'] = maxlon = max(maxlons)
        rec['maxlat'] = maxlat = max(maxlats)
        rec['mag'] = row['mag']
        rec['hypo'] = hypo
        rate = dic.get('occurrence_rate', numpy.nan)
        trt_smr = aw.trts.index(row['trt']) * TWO24
        tup = (u, row['seed'], 0, trt_smr,
               code[row['kind']], n_occ, row['mag'], row['rake'], rate,
               minlon, minlat, maxlon, maxlat, hypo, u, 1, 0, '???')
        rups.append(tup)
        geoms.append(numpy.concatenate([[num_surfaces], shapes, points]))
    if not rups:
        return ()
    dic = dict(geom=numpy.array(geoms, object), trts=aw.trts)
    # NB: PMFs for nonparametric ruptures are missing
    return hdf5.ArrayWrapper(numpy.array(rups, rupture_dt), dic) 
[docs]def get_ruptures(fname_csv):
    """
    Read ruptures in CSV format
    """
    aw = get_ruptures_aw(fname_csv)
    rups = []
    for rec, geom in zip(aw.array, aw.geom):
        trt = aw.trts[rec['trt_smr'] // TWO24]
        rups.append(get_ebr(rec, geom, trt).rupture)
    return rups 
    
[docs]def fix_vertices_order(array43):
    """
    Make sure the point inside array43 are in the form top_left, top_right,
    bottom_left, bottom_right
    The convention used in the USGS format has the last two points inverted
    with respect to what is expected by OQ
    """
    top_left = array43[0]
    top_right = array43[1]
    bottom_left = array43[3]
    bottom_right = array43[2]
    return numpy.array([top_left, top_right, bottom_left, bottom_right]) 
[docs]def is_matrix(rows):
    """
    :returns: False if the rows have different lenghts
    """
    lens = [len(row) for row in rows]
    return len(set(lens)) == 1 
[docs]def get_multiplanar(multipolygon_coords, mag, rake, trt):
    """
    :param multipolygon_coords:
       an array or list of shape (P, 5, 3) coming from geojson
    :returns: a BaseRupture with a PlanarSurface or a multiPlanarSurface
    """
    # NB: in geojson the last vertex is the same as the first, so I discard it
    # expecting shape (P, 4, 3)
    coords = numpy.array(multipolygon_coords, float)[:, :-1, :]
    P, vertices, _ = coords.shape
    if vertices != 4:
        raise ValueError('Expecting 4 vertices, got %d' % vertices)
    for p, array43 in enumerate(coords):
        coords[p] = fix_vertices_order(array43)
    if P == 1:
        surf = PlanarSurface.from_array(coords[0, :, :].T)
    else:
        surf = geo.MultiSurface([geo.PlanarSurface.from_array(array.T)
                                 for array in coords])
    rup = BaseRupture(mag, rake, trt, surf.get_middle_point(), surf)
    rup.rup_id = 0
    return rup 
[docs]def get_planar(site, msr, mag, aratio, strike, dip, rake, trt, ztor=None):
    """
    :returns: a BaseRupture with a PlanarSurface built around the site
    """
    hc = site.location
    surf = PlanarSurface.from_hypocenter(hc, msr, mag, aratio, strike, dip,
                                         rake, ztor)
    rup = BaseRupture(mag, rake, trt, hc, surf)
    rup.rup_id = 0
    vars(rup).update(vars(site))
    return rup 
# use a hard-coded MSR
def _width_length(mag, rake):
    assert rake is None or -180 <= rake <= 180, rake
    if rake is None:
        # "All" case
        return 10.0 ** (-1.01 + 0.32 * mag), 10.0 ** (-2.44 + 0.59 * mag)
    elif -45 <= rake <= 45 or rake >= 135 or rake <= -135:
        # strike slip
        return 10.0 ** (-0.76 + 0.27 * mag), 10.0 ** (-2.57 + 0.62 * mag)
    elif rake > 0:
        # thrust/reverse
        return 10.0 ** (-1.61 + 0.41 * mag), 10.0 ** (-2.42 + 0.58 * mag)
    else:
        # normal
        return 10.0 ** (-1.14 + 0.35 * mag), 10.0 ** (-1.88 + 0.50 * mag)
# copied from the Input Preparation Toolkit (IPT) algorithm
[docs]def build_planar(hypocenter, mag, rake, strike=0., dip=90., trt='*'):
    """
    Build a rupture with a PlanarSurface suitable for scenario calculations
    """
    # copying the algorithm used in PlanarSurface.from_hypocenter
    # with a fixed Magnitude-Scaling Relationship
    rdip = math.radians(dip)
    rup_width, rup_length = _width_length(mag, rake)
    if rup_length > 1000.:
        logging.error(f'{rup_length=} is wrong, the hand-coded MSR is wrong, '
                      'using 1000 km instead')
        rup_length = 1000.
    # calculate the height of the rupture being projected
    # on the vertical plane:
    rup_proj_height = rup_width * math.sin(rdip)
    # and its width being projected on the horizontal one:
    rup_proj_width = rup_width * math.cos(rdip)
    # half height of the vertical component of rupture width
    # is the vertical distance between the rupture geometrical
    # center and it's upper and lower borders:
    hheight = rup_proj_height / 2.
    # calculate how much shallower the upper border of the rupture
    # is than the upper seismogenic depth:
    vshift = hheight - hypocenter.depth
    # if it is shallower (vshift > 0) than we need to move the rupture
    # by that value vertically.
    rupture_center = hypocenter
    if vshift > 0:
        # we need to move the rupture center to make the rupture plane
        # lie below the surface
        hshift = abs(vshift / math.tan(rdip))
        rupture_center = hypocenter.point_at(
            hshift, vshift, azimuth=(strike + 90) % 360)
    theta = math.degrees(
        math.atan((rup_proj_width / 2.) / (rup_length / 2.)))
    hor_dist = math.sqrt((rup_length / 2.)**2 + (rup_proj_width / 2.)**2)
    vertical_increment = rup_proj_height / 2.
    top_left = rupture_center.point_at(
        hor_dist, -vertical_increment, azimuth=(strike + 180 + theta) % 360)
    top_right = rupture_center.point_at(
        hor_dist, -vertical_increment, azimuth=(strike - theta) % 360)
    bottom_left = rupture_center.point_at(
        hor_dist, vertical_increment, azimuth=(strike + 180 - theta) % 360)
    bottom_right = rupture_center.point_at(
        hor_dist, vertical_increment, azimuth=(strike + theta) % 360)
    # print(dip, strike, top_left, top_right, bottom_left, bottom_right)
    surf = PlanarSurface(strike, dip, top_left, top_right,
                         bottom_right, bottom_left)
    rup = BaseRupture(mag, rake, trt, hypocenter, surf)
    rup.rup_id = 0
    vars(rup).update(vars(hypocenter))
    return rup 
[docs]def build_planar_rupture_from_dict(rupture_dict):
    """
    Build a rupture with a PlanarSurface.
    :param rupture_dict:
        a dictionary containing at least the coordinates of the hypocenter
        ('lon', 'lat' and 'dep'), the magnitude ('mag') and the 'rake' and,
        optionally, the 'trt' (default '*'), the 'strike' (default 0) and
        the 'dip' (default 90).
    :returns: a BaseRupture with a PlanarSurface built around the site
    """
    r = rupture_dict
    hypo = Point(r['lon'], r['lat'], r['dep'])
    trt = r.get('trt', '*')
    strike = r.get('strike', 0)
    dip = r.get('dip', 90)
    if not r.get('msr'):
        # use the IPT method, to be removed
        rup = build_planar(hypo, r['mag'], r['rake'], strike, dip, trt)
    else:
        aratio = r.get('aspect_ratio', 2.)
        msr = MSR[r['msr']]()
        site_ = site.Site(Point(r['lon'], r['lat'], r['dep']))
        rup = get_planar(site_, msr, r['mag'], aratio,
                         strike, dip, r['rake'], trt)
    return rup