"""
New Zealand National Seismic Hazard Model 2022 Revision modification of Kuehn 2020 GMMs.
Adjustment in aleatory uncertainty to account for the effect of magnitude and distance
dependence towards smaller Vs30 values. In the intraslab model the adjustment for
backarc attenuation which is based on Abrahamson et al 2016 BC Hydro GMM.
Bradley, B. A., S. Bora, R. L. Lee, E. F. Manea, M. C. Gerstenberger, P.
J. Stafford, G. M. Atkinson, G. Weatherill, J. Hutchinson, C. A. de
la Torre, et al. (2022). Summary of the ground-motion character-
isation model for the 2022 New Zealand National Seismic Hazard
Model, GNS Science Rept. 2022/46, GNS Science, Lower Hutt, New
Zealand, 44 pp.
Bradley, B., S. Bora, R. Lee, E. Manea, M. Gerstenberger, P. Stafford, G.
Atkinson, G. Weatherill, J. Hutchinson, C. de la Torre, et al.
(2023). Summary of the ground-motion characterisation model
for the 2022 New Zealand National Seismic Hazard Model,
Bull. Seismol. Soc. Am.
Lee, R.L., B.A. Bradley, E.F. Manea, J.A. Hutchinson, S.S.
Bora (2022). Evaluation of Empirical Ground-Motion Models for the 2022 New
Zealand National Seismic Hazard Model Revision, Bull. Seismol. Soc. Am.
Module exports :class:`NZNSHM2022_KuehnEtAl2020SInter`
               :class:`NZNSHM2022_KuehnEtAl2020SSlab`
"""
import numpy as np
from scipy.interpolate import interp1d
from openquake.hazardlib.imt import PGA
from openquake.hazardlib import const
from openquake.hazardlib.gsim.kuehn_2020 import (
    _get_ln_z_ref,
    _infer_z,
    get_mean_values,
    get_sigma_mu_adjustment,
    KuehnEtAl2020SInter,
    CONSTS,
    REGION_TERMS_IF,
    REGION_TERMS_SLAB,
    Z_MODEL,
)
from openquake.hazardlib.gsim.nz22.const import (
    periods_AG20,
    rho_Ws,
    rho_Bs,
    periods,
    theta7s,
    theta8s,
)
BASIN_REGIONS = ["CAS", "JPN", "NZL", "TWN"]
[docs]def get_basin_term(C, ctx, region):
    """
    Returns the basin response term, based on the region and the depth
    to a given velocity layer
    :param numpy.ndarray z_value:
        Basin depth term (Z2.5 for JPN and CAS, Z1.0 for NZL and TWN)
    """
    # Basin term for Cascadia, Japan, New Zealand and Taiwan
    assert region in BASIN_REGIONS
    # Get c11, c12 and Z-model (same for interface and inslab events)
    c11 = C[REGION_TERMS_IF[region]["c11"]]
    c12 = C[REGION_TERMS_IF[region]["c12"]]
    CZ = Z_MODEL[region]
    if region in ("JPN", "CAS"):
        z_values = ctx.z2pt5.copy()
    elif region == "TWN":
        z_values = ctx.z1pt0.copy()
    else:
        z_values = np.zeros_like(ctx.vs30)
    # Use GMM's vs30 to basin param for none-measured values
    # (conversion of z2pt5 to metres also performed here)
    z_values = _infer_z(z_values, ctx.vs30, CZ, region)
    brt = np.zeros_like(z_values)
    mask = z_values > 0.0
    vs30 = ctx.vs30[mask]
    if not np.any(mask):
        # No basin amplification to be applied
        return 0.0
    ln_z_ref = _get_ln_z_ref(CZ, vs30)
    if region == "NZL":
        # Personal communication with Nico. We need to use the NZ
        # specific Z1.0-Vs30 correlation (Sanjay Bora 20.06.2022).
        brt[mask] = c11 + c12 * (ln_z_ref - ln_z_ref)
    else:
        brt[mask] = c11 + c12 * (np.log(z_values[mask]) - ln_z_ref)
    return brt 
[docs]def get_partial_derivative_site_pga(C, vs30, pga1100):
    """
    Defines the partial derivative of the site term with respect to
    the PGA on reference rock. Note that this is taken from AG20. The
    only difference is Vsref which is 1000 m/s in AG20. This function
    is added to get the nonlinear correction in aleatory sigma given
    below.
    """
    dfsite_dlnpga = np.zeros(vs30.shape)
    idx = vs30 <= C["k1"]
    vnorm = vs30[idx] / C["k1"]
    dfsite_dlnpga[idx] = (
        C["k2"]
        * pga1100
        * (
            (-1.0 / (pga1100 + CONSTS["c"]))
            + (1.0 / (pga1100 + CONSTS["c"] * (vnorm ** CONSTS["n"])))
        )
    )
    return dfsite_dlnpga 
[docs]def get_nonlinear_stddevs(C, C_PGA, imt, vs30, pga1100):
    """
    Get the heteroskedastic within-event and between-event standard
    deviation. This routine gives the aleatory sigma values corrected
    for nonlinearity in the soil response.
    """
    period = imt.period
    rho_W_itp = interp1d(np.log(periods_AG20), rho_Ws)
    rho_B_itp = interp1d(np.log(periods_AG20), rho_Bs)
    if period < 0.01:
        rhoW = 1.0
        rhoB = 1.0
    else:
        rhoW = rho_W_itp(np.log(period))
        rhoB = rho_B_itp(np.log(period))
    # Get linear tau and phi
    tau_lin = C["tau"] * np.ones(vs30.shape)
    tau_lin_pga = C_PGA["tau"] * np.ones(vs30.shape)
    phi_lin = C["phi"] * np.ones(vs30.shape)
    phi_lin_pga = C_PGA["phi"] * np.ones(vs30.shape)
    # Find the sites where nonlinear site terms apply
    idx = vs30 <= C["k1"]
    # Process the nonlinear site terms
    phi_amp = 0.3
    partial_f_pga = get_partial_derivative_site_pga(C, vs30[idx], pga1100[idx])
    phi_b = np.sqrt(phi_lin[idx] ** 2.0 - phi_amp**2.0)
    phi_b_pga = np.sqrt(phi_lin_pga[idx] ** 2.0 - phi_amp**2.0)
    # Get nonlinear tau and phi terms
    tau = tau_lin.copy()
    phi = phi_lin.copy()
    tau_nl_sq = (
        tau_lin[idx] ** 2
        + (partial_f_pga**2.0) * tau_lin_pga[idx] ** 2
        + (2.0 * partial_f_pga * tau_lin_pga[idx] * tau_lin[idx] * rhoB)
    )
    phi_nl_sq = (
        (phi_lin[idx] ** 2.0)
        + (partial_f_pga**2.0) * (phi_b_pga**2.0)
        + (2.0 * partial_f_pga * phi_b_pga * phi_b * rhoW)
    )
    tau[idx] = np.sqrt(tau_nl_sq)
    phi[idx] = np.sqrt(phi_nl_sq)
    sigma = np.sqrt(tau**2 + phi**2)
    return sigma, tau, phi 
[docs]def get_backarc_term(trt, imt, ctx):
    """
    The backarc correction factors to be applied with the ground motion prediction.
    In the NZ context, it is applied to only subduction intraslab events.
    It is essentially the correction factor taken from BC Hydro 2016. Abrahamson et al.
    (2016) Earthquake Spectra.
    The correction is applied only for backarc sites as function of distance.
    """
    period = imt.period
    w_epi_factor = 1.008
    theta7_itp = interp1d(np.log(periods[1:]), theta7s[1:])
    theta8_itp = interp1d(np.log(periods[1:]), theta8s[1:])
    # Note that there is no correction for PGV. Hence, I make theta7 and theta8 as 0
    # for periods < 0.
    if period < 0:
        theta7 = 0.0
        theta8 = 0.0
    elif period >= 0 and period < 0.02:
        theta7 = 1.0988
        theta8 = -1.42
    else:
        theta7 = theta7_itp(np.log(period))
        theta8 = theta8_itp(np.log(period))
    dists = ctx.rrup
    if trt == const.TRT.SUBDUCTION_INTRASLAB:
        min_dist = 85.0
        backarc = np.bool_(ctx.backarc)
        f_faba = np.zeros_like(dists)
        fixed_dists = dists[backarc]
        fixed_dists[fixed_dists < min_dist] = min_dist
        f_faba[backarc] = theta7 + theta8 * np.log(fixed_dists / 40.0)
        return f_faba * w_epi_factor
    else:
        f_faba = np.zeros_like(dists)
        return f_faba 
[docs]class NZNSHM2022_KuehnEtAl2020SInter(KuehnEtAl2020SInter):
    def __init__(
        self,
        region="GLO",
        m_b=None,
        sigma_mu_epsilon=0.0,
        modified_sigma=False,
    ):
        super().__init__(region=region, m_b=m_b, sigma_mu_epsilon=sigma_mu_epsilon)
        self.modified_sigma = modified_sigma
        # reset override of REQUIRES_SITES_PARAMETERS done by super
        if self.region in ("NZL"):
            self.REQUIRES_SITES_PARAMETERS = \
                
self.__class__.REQUIRES_SITES_PARAMETERS
            
[docs]    def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
        """
        See :meth:`superclass method
        <.base.GroundShakingIntensityModel.compute>`
        for spec of input and result values.
        """
        trt = self.DEFINED_FOR_TECTONIC_REGION_TYPE
        if self.m_b:
            # Take the user define magnitude scaling breakpoint
            m_b = self.m_b
        else:
            # Take the global m_b for the tectonic region type and region
            m_b = (
                REGION_TERMS_IF[self.region]["mb"]
                if trt == const.TRT.SUBDUCTION_INTERFACE
                else REGION_TERMS_SLAB[self.region]["mb"]
            )
        C_PGA = self.COEFFS[PGA()]
        # Get PGA on rock
        a1100 = None
        pga1100 = get_mean_values(C_PGA, self.region, 0., trt, m_b,
                                  ctx, a1100, pre_basin=True)
        if self.region in BASIN_REGIONS:
            pga1100 += get_basin_term(C_PGA, ctx, self.region)
        pga1100 += get_backarc_term(trt, PGA(), ctx)
        pga1100 = np.exp(pga1100)
        # For PGA and SA (T <= 0.1) we need to define PGA on soil to
        # ensure that SA (T) does not fall below PGA on soil
        pga_soil = None
        for imt in imts:
            if ("PGA" in imt.string) or ("SA" in imt.string) and (imt.period <= 0.1):
                pga_soil = get_mean_values(
                    C_PGA, self.region, 0., trt, m_b, ctx, pga1100, pre_basin=True)
                if pga1100.any() and self.region in BASIN_REGIONS:
                    pga_soil += get_basin_term(C_PGA, ctx, self.region)
                pga_soil += get_backarc_term(trt, PGA(), ctx)
                break
        for m, imt in enumerate(imts):
            # Get coefficients for imt
            C = self.COEFFS[imt]
            if (trt == const.TRT.SUBDUCTION_INTERFACE and
                self.region in ("JPN", "SAM")):
                m_break = m_b + C["dm_b"]
            else:
                m_break = m_b
            if imt.string == "PGA":
                mean[m] = pga_soil
            elif "SA" in imt.string and imt.period <= 0.1:
                # If Sa (T) < PGA for T <= 0.1 then set mean Sa(T) to mean PGA
                mean[m] = get_mean_values(C, self.region, imt.period, trt,
                                          m_break, ctx, pga1100, pre_basin=True)
                if pga1100.any() and self.region in BASIN_REGIONS:
                    mean[m] += get_basin_term(C, ctx, self.region)
                mean[m] += get_backarc_term(trt, imt, ctx)
                idx = mean[m] < pga_soil
                mean[m][idx] = pga_soil[idx]
            else:
                # For PGV and Sa (T > 0.1 s)
                mean[m] = get_mean_values(C, self.region, imt.period, trt, m_break,
                                          ctx, pga1100, pre_basin=True)
                if pga1100.any() and self.region in BASIN_REGIONS:
                    mean[m] += get_basin_term(C, ctx, self.region)
                mean[m] += get_backarc_term(trt, imt, ctx)
            # Apply the sigma mu adjustment if necessary
            if self.sigma_mu_epsilon:
                sigma_mu_adjust = get_sigma_mu_adjustment(
                    self.sigma_mu_model, imt, ctx.mag, ctx.rrup
                )
                mean[m] += self.sigma_mu_epsilon * sigma_mu_adjust
            # Get standard deviations
            if self.modified_sigma:
                sig[m], tau[m], phi[m] = get_nonlinear_stddevs(
                    C, C_PGA, imt, ctx.vs30, pga1100)
            else:
                tau[m] = C["tau"]
                phi[m] = C["phi"]
                sig[m] = np.sqrt(C["tau"] ** 2.0 + C["phi"] ** 2.0)  
[docs]class NZNSHM2022_KuehnEtAl2020SSlab(NZNSHM2022_KuehnEtAl2020SInter):
    #: Supported tectonic region type is subduction in-slab
    DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.SUBDUCTION_INTRASLAB
    # Need vs30 + backarc also for inslab
    REQUIRES_SITES_PARAMETERS = {"vs30", "backarc"}
    # Other required params
    REQUIRES_ATTRIBUTES = {'region', 'm_b', 'sigma_mu_model', 'sigma_mu_epsilon'}