# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2013-2025 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`CampbellBozorgnia2008`, and
:class:'CampbellBozorgnia2008Arbitrary'
"""
import numpy as np
from math import log, exp
from openquake.hazardlib.gsim.base import GMPE, CoeffsTable
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, PGD, CAV, SA
from openquake.hazardlib.gsim.chiou_youngs_2008 import _get_z1_ref
METRES_PER_KM = 1000.
def _get_cb07_z2pt5_ref(vs30):
    """
    Estimate unknown z2pt5 using the relationships described
    in Campbell and Bozorgnia (2007). Returns z2pt5 in km.
    """
    # First get z1pt0 (in metres) using Chiou and Youngs (2008)
    z1pt0 = _get_z1_ref(vs30)
    
    # Now use Campbell and Bozorgnia (2007) to get z2pt5 from z1pt0
    z2pt5 = 519 + (3.595 * z1pt0)
    return z2pt5 / METRES_PER_KM
def _get_basin_term(C, ctx, region=None):
    """
    Returns the basin response term (equation 12, page 146)
    """
    z2pt5 = ctx.z2pt5.copy()
    # Use GMM's vs30 to z2pt5 for non-measured values
    mask = z2pt5 == -999
    z2pt5[mask] = _get_cb07_z2pt5_ref(ctx.vs30[mask])
    fsed = np.zeros_like(z2pt5, dtype=float)
    idx = z2pt5 < 1.0
    if np.any(idx):
        fsed[idx] = C['c11'] * (z2pt5[idx] - 1.0)
    idx = z2pt5 > 3.0
    if np.any(idx):
        fsed[idx] = (C['c12'] * C['k3'] * exp(-0.75)) *\
            (1.0 - np.exp(-0.25 * (z2pt5[idx] - 3.0)))
    return fsed
def _compute_distance_term(C, ctx):
    """
    Returns the distance scaling factor (equation (3), page 145)
    """
    return (C['c4'] + C['c5'] * ctx.mag) * \
        np.log(np.sqrt(ctx.rrup ** 2. + C['c6'] ** 2.))
def _compute_hanging_wall_term(C, ctx):
    """
    Returns the hanging wall scaling term, the product of the scaling
    coefficient and four separate scaling terms for distance, magnitude,
    rupture depth and dip (equations 6 - 10, page 146). Individual
    scaling terms defined in separate functions
    """
    return (C['c9'] *
            _get_hanging_wall_distance_term(ctx) *
            _get_hanging_wall_magnitude_term(ctx.mag) *
            _get_hanging_wall_depth_term(ctx.ztor) *
            _get_hanging_wall_dip_term(ctx.dip))
def _compute_imt1100(C, ctx, get_pga_site=False):
    """
    Computes the PGA on reference (Vs30 = 1100 m/s) rock.
    """
    # Calculates simple site response term assuming all sites 1100 m/s
    fsite = (C['c10'] + (C['k2'] * C['n'])) * log(1100. / C['k1'])
    # Calculates the PGA on rock
    pga1100 = np.exp(_compute_magnitude_term(C, ctx.mag) +
                     _compute_distance_term(C, ctx) +
                     _compute_style_of_faulting_term(C, ctx) +
                     _compute_hanging_wall_term(C, ctx) +
                     _get_basin_term(C, ctx) +
                     fsite)
    # If PGA at the site is needed then remove factor for rock and
    # re-calculate on correct site condition
    if get_pga_site:
        pga_site = np.exp(np.log(pga1100) - fsite)
        fsite = _compute_shallow_site_response(C, ctx, pga1100)
        pga_site = np.exp(np.log(pga_site) + fsite)
    else:
        pga_site = None
    return pga1100, pga_site
def _compute_intra_event_alpha(C, vs30, pga1100):
    """
    Returns the linearised functional relationship between fsite and
    pga1100, determined from the partial derivative defined on equation 17
    on page 148
    """
    alpha = np.zeros_like(vs30, dtype=float)
    idx = vs30 < C['k1']
    if np.any(idx):
        temp1 = (pga1100[idx] +
                 C['c'] * (vs30[idx] / C['k1']) ** C['n']) ** -1.
        temp1 = temp1 - ((pga1100[idx] + C['c']) ** -1.)
        alpha[idx] = C['k2'] * pga1100[idx] * temp1
    return alpha
def _compute_intra_event_std(C, vs30, pga1100, sigma_pga):
    """
    Returns the intra-event standard deviation at the site, as defined in
    equation 15, page 147
    """
    # Get intra-event standard deviation at the base of the site profile
    sig_lnyb = np.sqrt(C['s_lny'] ** 2. - C['s_lnAF'] ** 2.)
    sig_lnab = np.sqrt(sigma_pga ** 2. - C['s_lnAF'] ** 2.)
    # Get linearised relationship between f_site and ln PGA
    alpha = _compute_intra_event_alpha(C, vs30, pga1100)
    return np.sqrt(
        (sig_lnyb ** 2.) +
        (C['s_lnAF'] ** 2.) +
        ((alpha ** 2.) * (sig_lnab ** 2.)) +
        (2.0 * alpha * C['rho'] * sig_lnyb * sig_lnab))
def _compute_magnitude_term(C, mag):
    """
    Returns the magnitude scaling factor (equation (2), page 144)
    """
    fmag = C['c0'] + C['c1'] * mag
    term = C['c2'] * (mag - 5.5)
    term[mag <= 5.5] = 0.
    term[mag > 6.5] = C['c2'] * (mag[mag > 6.5] - 5.5) + (
        C['c3'] * (mag[mag > 6.5] - 6.5))
    return fmag + term
def _compute_shallow_site_response(C, ctx, pga1100):
    """
    Returns the shallow site response term (equation 11, page 146)
    """
    stiff_factor = C['c10'] + (C['k2'] * C['n'])
    # Initially default all sites to intermediate rock value
    fsite = stiff_factor * np.log(ctx.vs30 / C['k1'])
    # Check for soft soil ctx
    idx = ctx.vs30 < C['k1']
    if np.any(idx):
        pga_scale = np.log(pga1100[idx] +
                           (C['c'] * ((ctx.vs30[idx] / C['k1']) **
                            C['n']))) - np.log(pga1100[idx] + C['c'])
        fsite[idx] = C['c10'] * np.log(ctx.vs30[idx] / C['k1']) + \
            (C['k2'] * pga_scale)
    # Any very hard rock ctx are rendered to the constant amplification
    # factor
    idx = ctx.vs30 >= 1100.
    if np.any(idx):
        fsite[idx] = stiff_factor * log(1100. / C['k1'])
    return fsite
def _compute_style_of_faulting_term(C, ctx):
    """
    Returns the style of faulting factor, depending on the mechanism (rake)
    and top of rupture depth (equations (4) and (5), pages 145 - 146)
    """
    frv, fnm = _get_fault_type_dummy_variables(ctx.rake)
    ffltz = np.zeros_like(ctx.rake)
    # Top of rupture depth term only applies to reverse faults
    ffltz[(frv > 0.) & (ctx.ztor < 1)] = ctx.ztor[(frv > 0.) & (ctx.ztor < 1)]
    ffltz[(frv > 0.) & (ctx.ztor >= 1)] = 1.
    return C['c7'] * frv * ffltz + C['c8'] * fnm
def _get_fault_type_dummy_variables(rake):
    """
    Returns the coefficients FRV and FNM, describing if the rupture is
    reverse (FRV = 1.0, FNM = 0.0), normal (FRV = 0.0, FNM = 1.0) or
    strike-slip/oblique-slip (FRV = 0.0, FNM = 0.0). Reverse faults are
    classified as those with a rake in the range 30 to 150 degrees. Normal
    faults are classified as having a rake in the range -150 to -30 degrees
    :returns:
        FRV, FNM
    """
    frv, fnm = np.zeros_like(rake), np.zeros_like(rake)
    frv[(rake > 30.0) & (rake < 150.)] = 1.
    fnm[(rake > -150.) & (rake < -30.)] = 1.
    return frv, fnm
def _get_hanging_wall_depth_term(ztor):
    """
    Returns the hanging wall depth scaling term (equation 9, page 146)
    """
    return np.where(ztor >= 20.0, 0., (20. - ztor) / 20.0)
def _get_hanging_wall_dip_term(dip):
    """
    Returns the hanging wall dip scaling term (equation 10, page 146)
    """
    return np.where(dip > 70.0, (90.0 - dip) / 20.0, 1.0)
def _get_hanging_wall_distance_term(ctx):
    """
    Returns the hanging wall distance scaling term (equation 7, page 146)
    """
    fhngr = np.ones_like(ctx.rjb, dtype=float)
    idx = (ctx.rjb > 0.) & (ctx.ztor < 1)
    temp_rjb = np.sqrt(ctx.rjb[idx] ** 2. + 1.)
    r_max = np.max(np.column_stack([ctx.rrup[idx], temp_rjb]), axis=1)
    fhngr[idx] = (r_max - ctx.rjb[idx]) / r_max
    idx = (ctx.rjb > 0.) & (ctx.ztor >= 1)
    fhngr[idx] = (ctx.rrup[idx] - ctx.rjb[idx]) / ctx.rrup[idx]
    return fhngr
def _get_hanging_wall_magnitude_term(mag):
    """
    Returns the hanging wall magnitude scaling term (equation 8, page 146)
    """
    return np.clip(2. * (mag - 6.0), 0., 1.)
def _get_stddevs(kind, C, ctx, pga1100, sigma_pga):
    """
    Returns the standard deviations as described in the "ALEATORY
    UNCERTAINTY MODEL" section of the paper. Equations 13 to 19, pages 147
    to 151
    """
    std_intra = _compute_intra_event_std(C, ctx.vs30, pga1100, sigma_pga)
    std_inter = C['t_lny'] * np.ones_like(ctx.vs30)
    return [_get_total_sigma(kind, C, std_intra, std_inter),
            std_inter, std_intra]
def _get_total_sigma(kind, C, std_intra, std_inter):
    """
    Returns the total sigma term as defined by equation 16, page 147
    This method is defined here as the Campbell & Bozorgnia (2008) model
    can also be applied to the "arbitrary" horizontal component
    definition, in which case the total sigma is modified (see
    equation 18, page 150).
    """
    tot2 = std_intra ** 2. + std_inter ** 2.
    if kind == 'arbitrary':
        return np.sqrt(tot2 + C['c_lny'] ** 2.)
    return np.sqrt(tot2)
[docs]class CampbellBozorgnia2008(GMPE):
    """
    Implements GMPE developed by Kenneth W. Campbell and Yousef Bozorgnia,
    published as "NGA Ground Motion Model for the Geometric Mean Horizontal
    Component of PGA, PGV, PGD and 5 % Damped Linear Elastic Response Spectra
    for Periods Ranging from 0.01 to 10s" (2008, Earthquake Spectra,
    Volume 24, Number 1, pages 139 - 171).
    This class implements the model for the Geometric Mean of the elastic
    spectra.
    Included in the coefficient set are the coefficients for the
    Campbell & Bozorgnia (2010) GMPE for predicting Cumulative Absolute
    Velocity (CAV), published as "A Ground Motion Prediction Equation for
    the Horizontal Component of Cumulative Absolute Velocity (CSV) Based on
    the PEER-NGA Strong Motion Database" (2010, Earthquake Spectra, Volume 26,
    Number 3, 635 - 650).
    """
    kind = "base"
    #: Supported tectonic region type is active shallow crust
    DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST
    #: Supported intensity measure types are spectral acceleration, peak
    #: ground velocity, peak ground displacement and peak ground acceleration
    #: Additional model for cumulative absolute velocity defined in
    #: Campbell & Bozorgnia (2010)
    DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, PGV, PGD, CAV, SA}
    #: Supported intensity measure component is orientation-independent
    #: average horizontal :attr:`~openquake.hazardlib.const.IMC.GMRotI50`
    DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.GMRotI50
    #: Supported standard deviation types are inter-event, intra-event
    #: and total, see section "Aleatory Uncertainty Model", page 147.
    DEFINED_FOR_STANDARD_DEVIATION_TYPES = {
        const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT}
    #: Required site parameters are Vs30, Vs30 type (measured or inferred),
    #: and depth (km) to the 2.5 km/s shear wave velocity layer (z2pt5)
    REQUIRES_SITES_PARAMETERS = {'vs30', 'z2pt5'}
    #: Required rupture parameters are magnitude, rake, dip, ztor
    REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake', 'dip', 'ztor'}
    #: Required distance measures are Rrup and Rjb.
    REQUIRES_DISTANCES = {'rrup', 'rjb'}
[docs]    def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi):
        """
        See :meth:`superclass method
        <.base.GroundShakingIntensityModel.compute>`
        for spec of input and result values.
        """
        C_PGA = self.COEFFS[PGA()]
        for m, imt in enumerate(imts):
            C = self.COEFFS[imt]
            # compute median pga on rock (vs30=1100), needed for site response
            # term calculation
            # For spectral accelerations at periods between 0.0 and 0.25 s,
            # Sa (T) cannot be less than PGA on soil, therefore if the IMT is
            # in this period range it is necessary to calculate PGA on soil
            get_pga_site = imt.period > 0.0 and imt.period < 0.25
            pga1100, pga_site = _compute_imt1100(C_PGA, ctx, get_pga_site)
            # Get the median ground motion
            mean[m] = (_compute_magnitude_term(C, ctx.mag) +
                       _compute_distance_term(C, ctx) +
                       _compute_style_of_faulting_term(C, ctx) +
                       _compute_hanging_wall_term(C, ctx) +
                       _compute_shallow_site_response(C, ctx, pga1100) +
                       _get_basin_term(C, ctx))
            # If it is necessary to ensure that Sa(T) >= PGA
            # (see previous comment)
            if get_pga_site:
                idx = mean[m] < np.log(pga_site)
                mean[m, idx] = np.log(pga_site[idx])
            sig[m], tau[m], phi[m] = _get_stddevs(
                self.kind, C, ctx, pga1100, C_PGA['s_lny']) 
    COEFFS = CoeffsTable(sa_damping=5, table="""\
      imt      c0     c1      c2      c3      c4    c5    c6     c7      c8     c9     c10    c11   c12    k1      k2     k3     c     n  s_lny  t_lny s_lnAF  c_lny    rho
      cav  -4.354  0.942  -0.178  -0.346  -1.309 0.087  7.24  0.111  -0.108  0.362   2.549  0.090  1.277  400  -2.690  1.000  1.88  1.18  0.371  0.196  0.300  0.089  0.735
      pgd  -5.270  1.600  -0.070   0.000  -2.000  0.17  4.00  0.000   0.000  0.000  -0.820  0.300  1.000  400   0.000  2.744  1.88  1.18  0.667  0.485  0.300  0.290  0.174
      pgv   0.954  0.696  -0.309  -0.019  -2.016  0.17  4.00  0.245   0.000  0.358   1.694  0.092  1.000  400  -1.955  1.929  1.88  1.18  0.484  0.203  0.300  0.190  0.691
      pga  -1.715  0.500  -0.530  -0.262  -2.118  0.17  5.60  0.280  -0.120  0.490   1.058  0.040  0.610  865  -1.186  1.839  1.88  1.18  0.478  0.219  0.300  0.166  1.000
    0.010  -1.715  0.500  -0.530  -0.262  -2.118  0.17  5.60  0.280  -0.120  0.490   1.058  0.040  0.610  865  -1.186  1.839  1.88  1.18  0.478  0.219  0.300  0.166  1.000
    0.020  -1.680  0.500  -0.530  -0.262  -2.123  0.17  5.60  0.280  -0.120  0.490   1.102  0.040  0.610  865  -1.219  1.840  1.88  1.18  0.480  0.219  0.300  0.166  0.999
    0.030  -1.552  0.500  -0.530  -0.262  -2.145  0.17  5.60  0.280  -0.120  0.490   1.174  0.040  0.610  908  -1.273  1.841  1.88  1.18  0.489  0.235  0.300  0.165  0.989
    0.050  -1.209  0.500  -0.530  -0.267  -2.199  0.17  5.74  0.280  -0.120  0.490   1.272  0.040  0.610 1054  -1.346  1.843  1.88  1.18  0.510  0.258  0.300  0.162  0.963
    0.075  -0.657  0.500  -0.530  -0.302  -2.277  0.17  7.09  0.280  -0.120  0.490   1.438  0.040  0.610 1086  -1.471  1.845  1.88  1.18  0.520  0.292  0.300  0.158  0.922
    0.100  -0.314  0.500  -0.530  -0.324  -2.318  0.17  8.05  0.280  -0.099  0.490   1.604  0.040  0.610 1032  -1.624  1.847  1.88  1.18  0.531  0.286  0.300  0.170  0.898
    0.150  -0.133  0.500  -0.530  -0.339  -2.309  0.17  8.79  0.280  -0.048  0.490   1.928  0.040  0.610  878  -1.931  1.852  1.88  1.18  0.532  0.280  0.300  0.180  0.890
    0.200  -0.486  0.500  -0.446  -0.398  -2.220  0.17  7.60  0.280  -0.012  0.490   2.194  0.040  0.610  748  -2.188  1.856  1.88  1.18  0.534  0.249  0.300  0.186  0.871
    0.250  -0.890  0.500  -0.362  -0.458  -2.146  0.17  6.58  0.280   0.000  0.490   2.351  0.040  0.700  654  -2.381  1.861  1.88  1.18  0.534  0.240  0.300  0.191  0.852
    0.300  -1.171  0.500  -0.294  -0.511  -2.095  0.17  6.04  0.280   0.000  0.490   2.460  0.040  0.750  587  -2.518  1.865  1.88  1.18  0.544  0.215  0.300  0.198  0.831
    0.400  -1.466  0.500  -0.186  -0.592  -2.066  0.17  5.30  0.280   0.000  0.490   2.587  0.040  0.850  503  -2.657  1.874  1.88  1.18  0.541  0.217  0.300  0.206  0.785
    0.500  -2.569  0.656  -0.304  -0.536  -2.041  0.17  4.73  0.280   0.000  0.490   2.544  0.040  0.883  457  -2.669  1.883  1.88  1.18  0.550  0.214  0.300  0.208  0.735
    0.750  -4.844  0.972  -0.578  -0.406  -2.000  0.17  4.00  0.280   0.000  0.490   2.133  0.077  1.000  410  -2.401  1.906  1.88  1.18  0.568  0.227  0.300  0.221  0.628
    1.000  -6.406  1.196  -0.772  -0.314  -2.000  0.17  4.00  0.255   0.000  0.490   1.571  0.150  1.000  400  -1.955  1.929  1.88  1.18  0.568  0.255  0.300  0.225  0.534
    1.500  -8.692  1.513  -1.046  -0.185  -2.000  0.17  4.00  0.161   0.000  0.490   0.406  0.253  1.000  400  -1.025  1.974  1.88  1.18  0.564  0.296  0.300  0.222  0.411
    2.000  -9.701  1.600  -0.978  -0.236  -2.000  0.17  4.00  0.094   0.000  0.371  -0.456  0.300  1.000  400  -0.299  2.019  1.88  1.18  0.571  0.296  0.300  0.226  0.331
    3.000 -10.556  1.600  -0.638  -0.491  -2.000  0.17  4.00  0.000   0.000  0.154  -0.820  0.300  1.000  400   0.000  2.110  1.88  1.18  0.558  0.326  0.300  0.229  0.289
    4.000 -11.212  1.600  -0.316  -0.770  -2.000  0.17  4.00  0.000   0.000  0.000  -0.820  0.300  1.000  400   0.000  2.200  1.88  1.18  0.576  0.297  0.300  0.237  0.261
    5.000 -11.684  1.600  -0.070  -0.986  -2.000  0.17  4.00  0.000   0.000  0.000  -0.820  0.300  1.000  400   0.000  2.291  1.88  1.18  0.601  0.359  0.300  0.237  0.200
    7.500 -12.505  1.600  -0.070  -0.656  -2.000  0.17  4.00  0.000   0.000  0.000  -0.820  0.300  1.000  400   0.000  2.517  1.88  1.18  0.628  0.428  0.300  0.271  0.174
    10.00 -13.087  1.600  -0.070  -0.422  -2.000  0.17  4.00  0.000   0.000  0.000  -0.820  0.300  1.000  400   0.000  2.744  1.88  1.18  0.667  0.485  0.300  0.290  0.174
    """) 
[docs]class CampbellBozorgnia2008Arbitrary(CampbellBozorgnia2008):
    """
    Implements the Campbell & Bozorgnia (2008) GMPE as modified to represent
    the arbitrary horizontal component of ground motion, instead of the
    Rotationally Independent Geometric Mean (GMRotI) originally defined in
    the paper.
    """
    kind = "arbitrary"
    #: Supported intensity measure component is arbitrary horizontal
    #: :attr:`~openquake.hazardlib.const.IMC.HORIZONTAL`,
    DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.HORIZONTAL