Source code for openquake.hazardlib.source.characteristic

# The Hazard Library
# Copyright (C) 2013-2018 GEM Foundation
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <>.
Module :mod:`openquake.hazardlib.source.characteristic` defines
import numpy
from openquake.hazardlib.source.base import ParametricSeismicSource
from openquake.hazardlib.geo import mesh, NodalPlane
from openquake.hazardlib.source.rupture import ParametricProbabilisticRupture
from openquake.baselib.slots import with_slots
from openquake.hazardlib.geo.utils import angular_distance, KM_TO_DEGREES

[docs]@with_slots class CharacteristicFaultSource(ParametricSeismicSource): """ Characteristic source typology represents seismicity occuring on a generic fault surface with seismic events rupturing the entire fault surface independently of their magnitude values. Characteristic source typology can be used to model individual faults or fault segments that tend to produce essentialy same size earthquakes (see for instance: Schwartz, D. P., K. J. Coppersmith, Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geophys. Res., 89, 5681-5698, 1984) :param surface: Fault surface, see :mod:`openquake.hazardlib.geo.surface`. :param rake: Angle describing rupture propagation direction in decimal degrees. See also :class:`openquake.hazardlib.source.base.ParametricSeismicSource` for description of other parameters. Note that a ``CharacteristicFaultSource`` does not need any mesh spacing, magnitude scaling relationship, and aspect ratio, therefore the constructor sets these parameters to ``None``. NB: if you want to convert a characteristic source into XML, you must set its attribute `surface_node` to an explicit representation of the surface as a LiteralNode object. """ _slots_ = ParametricSeismicSource._slots_ + 'surface rake'.split() MODIFICATIONS = set(('set_geometry',)) def __init__(self, source_id, name, tectonic_region_type, mfd, temporal_occurrence_model, surface, rake, surface_node=None): super().__init__( source_id, name, tectonic_region_type, mfd, None, None, None, temporal_occurrence_model) NodalPlane.check_rake(rake) self.surface = surface self.rake = rake
[docs] def get_bounding_box(self, maxdist): """ Bounding box containing all points, enlarged by the maximum distance """ west, east, north, south = self.surface.get_bounding_box() a1 = maxdist * KM_TO_DEGREES a2 = angular_distance(maxdist, north, south) return west - a2, south - a1, east + a2, north + a1
[docs] def iter_ruptures(self): """ See :meth: `openquake.hazardlib.source.base.BaseSeismicSource.iter_ruptures`. For each magnitude value in the given MFD, return an earthquake rupture with a surface always equal to the given surface. """ hypocenter = self.surface.get_middle_point() for mag, occurrence_rate in self.get_annual_occurrence_rates(): yield ParametricProbabilisticRupture( mag, self.rake, self.tectonic_region_type, hypocenter, self.surface, occurrence_rate, self.temporal_occurrence_model)
[docs] def count_ruptures(self): """ See :meth: `openquake.hazardlib.source.base.BaseSeismicSource.count_ruptures`. """ return len(self.get_annual_occurrence_rates())
[docs] def modify_set_geometry(self, surface, surface_node=None): """ Modifies the current fault geometry :param surface: Fault surface, see :mod:`openquake.hazardlib.geo.surface`. :param surface_node: If needed for export, provide the surface as a LiteralNode object """ self.surface = surface self.surface_node = surface_node
@property def polygon(self): """ The underlying polygon, as a convex hull """ return self.surface.mesh.get_convex_hull()