# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# LICENSE
#
# Copyright (C) 2010-2023 GEM Foundation, G. Weatherill, M. Pagani,
# D. Monelli.
#
# The Hazard Modeller's Toolkit is free software: you can redistribute
# it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version
# 3 of the License, or (at your option) any later version.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>
#
# DISCLAIMER
#
# The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein
# is released as a prototype implementation on behalf of
# scientists and engineers working within the GEM Foundation (Global
# Earthquake Model).
#
# It is distributed for the purpose of open collaboration and in the
# hope that it will be useful to the scientific, engineering, disaster
# risk and software design communities.
#
# The software is NOT distributed as part of GEM’s OpenQuake suite
# (https://www.globalquakemodel.org/tools-products) and must be considered as a
# separate entity. The software provided herein is designed and implemented
# by scientific staff. It is not developed to the design standards, nor
# subject to same level of critical review by professional software
# developers, as GEM’s OpenQuake software suite.
#
# Feedback and contribution to the software is welcome, and can be
# directed to the hazard scientific staff of the GEM Model Facility
# (hazard@globalquakemodel.org).
#
# The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# The GEM Foundation, and the authors of the software, assume no
# liability for use of the software.
"""
Set of moment tensor utility functions
"""
import numpy as np
from math import fabs, log10, sqrt, acos, atan2, pi
[docs]def tensor_components_to_use(mrr, mtt, mpp, mrt, mrp, mtp):
    """
    Converts components to Up, South, East definition::
     USE = [[mrr, mrt, mrp],
            [mtt, mtt, mtp],
            [mrp, mtp, mpp]]
    """
    return np.array([[mrr, mrt, mrp], [mrt, mtt, mtp], [mrp, mtp, mpp]]) 
[docs]def tensor_components_to_ned(mrr, mtt, mpp, mrt, mrp, mtp):
    """
    Converts components to North, East, Down definition::
     NED = [[mtt, -mtp, mrt],
            [-mtp, mpp, -mrp],
            [mrt, -mtp, mrr]]
    """
    return np.array([[mtt, -mtp, mrt], [-mtp, mpp, -mrp], [mrt, -mtp, mrr]]) 
[docs]def get_azimuth_plunge(vect, degrees=True):
    """
    For a given vector in USE format, retrieve the azimuth and plunge
    """
    if vect[0] > 0:
        vect = -1.0 * np.copy(vect)
    vect_hor = sqrt(vect[1] ** 2.0 + vect[2] ** 2.0)
    plunge = atan2(-vect[0], vect_hor)
    azimuth = atan2(vect[2], -vect[1])
    if degrees:
        icr = 180.0 / pi
        return icr * azimuth % 360.0, icr * plunge
    else:
        return azimuth % (2.0 * pi), plunge 
COORD_SYSTEM = {
    "USE": tensor_components_to_use,
    "NED": tensor_components_to_ned,
}
ROT_NED_USE = np.array([[0.0, 0.0, -1.0], [-1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
[docs]def use_to_ned(tensor):
    """
    Converts a tensor in USE coordinate sytem to NED
    """
    return np.array(ROT_NED_USE.T @ tensor @ ROT_NED_USE) 
[docs]def ned_to_use(tensor):
    """
    Converts a tensor in NED coordinate sytem to USE
    """
    return np.array(ROT_NED_USE @ tensor @ ROT_NED_USE.T) 
[docs]def tensor_to_6component(tensor, frame="USE"):
    """
    Returns a tensor to six component vector [Mrr, Mtt, Mpp, Mrt, Mrp, Mtp]
    """
    if "NED" in frame:
        tensor = ned_to_use(tensor)
    return [
        tensor[0, 0],
        tensor[1, 1],
        tensor[2, 2],
        tensor[0, 1],
        tensor[0, 2],
        tensor[1, 2],
    ] 
[docs]def normalise_tensor(tensor):
    """
    Normalise the tensor by dividing it by its norm, defined such that
    np.sqrt(X:X)
    """
    tensor_norm = np.linalg.norm(tensor)
    return tensor / tensor_norm, tensor_norm 
[docs]def eigendecompose(tensor, normalise=False):
    """
    Performs and eigendecomposition of the tensor and orders into
    descending eigenvalues
    """
    if normalise:
        tensor, tensor_norm = normalise_tensor(tensor)
    else:
        tensor_norm = 1.0
    eigvals, eigvects = np.linalg.eigh(tensor, UPLO="U")
    isrt = np.argsort(eigvals)
    eigenvalues = eigvals[isrt] * tensor_norm
    eigenvectors = eigvects[:, isrt]
    return eigenvalues, eigenvectors 
[docs]def matrix_to_euler(rotmat):
    """Inverse of euler_to_matrix()."""
    def cvec(x, y, z):
        return np.array([[x, y, z]]).T
    ex = cvec(1.0, 0.0, 0.0)
    ez = cvec(0.0, 0.0, 1.0)
    exs = rotmat.T @ ex
    ezs = rotmat.T @ ez
    enodes = np.cross(ez.T, ezs.T).T
    if np.linalg.norm(enodes) < 1e-10:
        enodes = exs
    enodess = rotmat * enodes
    cos_alpha = float((ez.T @ ezs))
    if cos_alpha > 1.0:
        cos_alpha = 1.0
    if cos_alpha < -1.0:
        cos_alpha = -1.0
    alpha = acos(cos_alpha)
    beta = np.mod(atan2(enodes[1, 0], enodes[0, 0]), pi * 2.0)
    gamma = np.mod(-atan2(enodess[1, 0], enodess[0, 0]), pi * 2.0)
    return unique_euler(alpha, beta, gamma) 
[docs]def unique_euler(alpha, beta, gamma):
    """
    Uniquify euler angle triplet.
    Put euler angles into ranges compatible with (dip,strike,-rake)
    in seismology:
    alpha (dip) : [0, pi/2]
    beta (strike) : [0, 2*pi)
    gamma (-rake) : [-pi, pi)
    If alpha is near to zero, beta is replaced by beta+gamma and gamma is set
    to zero, to prevent that additional ambiguity.
    If alpha is near to pi/2, beta is put into the range [0,pi).
    """
    alpha = np.mod(alpha, 2.0 * pi)
    if 0.5 * pi < alpha and alpha <= pi:
        alpha = pi - alpha
        beta = beta + pi
        gamma = 2.0 * pi - gamma
    elif pi < alpha and alpha <= 1.5 * pi:
        alpha = alpha - pi
        gamma = pi - gamma
    elif 1.5 * pi < alpha and alpha <= 2.0 * pi:
        alpha = 2.0 * pi - alpha
        beta = beta + pi
        gamma = pi + gamma
    alpha = np.mod(alpha, 2.0 * pi)
    beta = np.mod(beta, 2.0 * pi)
    gamma = np.mod(gamma + pi, 2.0 * pi) - pi
    # If dip is exactly 90 degrees, one is still
    # free to choose between looking at the plane from either side.
    # Choose to look at such that beta is in the range [0,180)
    # This should prevent some problems, when dip is close to 90 degrees:
    if fabs(alpha - 0.5 * pi) < 1e-10:
        alpha = 0.5 * pi
    if fabs(beta - pi) < 1e-10:
        beta = pi
    if fabs(beta - 2.0 * pi) < 1e-10:
        beta = 0.0
    if fabs(beta) < 1e-10:
        beta = 0.0
    if alpha == 0.5 * pi and beta >= pi:
        gamma = -gamma
        beta = np.mod(beta - pi, 2.0 * pi)
        gamma = np.mod(gamma + pi, 2.0 * pi) - pi
        assert 0.0 <= beta < pi
        assert -pi <= gamma < pi
    if alpha < 1e-7:
        beta = np.mod(beta + gamma, 2.0 * pi)
        gamma = 0.0
    return (alpha, beta, gamma) 
[docs]def moment_magnitude_scalar(moment):
    """
    Uses Hanks & Kanamori formula for calculating moment magnitude from
    a scalar moment (Nm)
    """
    if isinstance(moment, np.ndarray):
        return (2.0 / 3.0) * (np.log10(moment) - 9.05)
    else:
        return (2.0 / 3.0) * (log10(moment) - 9.05)