Source code for openquake.hazardlib.source_reader

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2019, GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake.  If not, see <http://www.gnu.org/licenses/>.

import os.path
import pickle
import operator
import logging
import gzip
import zlib
import numpy

from openquake.baselib import parallel, general, hdf5, python3compat
from openquake.hazardlib import nrml, sourceconverter, InvalidFile, calc
from openquake.hazardlib.source.multi_fault import save
from openquake.hazardlib.valid import basename, fragmentno
from openquake.hazardlib.lt import apply_uncertainties

U16 = numpy.uint16
TWO16 = 2 ** 16  # 65,536
TWO24 = 2 ** 24  # 16,777,216
TWO30 = 2 ** 30  # 1,073,741,24
TWO32 = 2 ** 32  # 4,294,967,296
bybranch = operator.attrgetter('branch')

CALC_TIME, NUM_SITES, NUM_RUPTURES, WEIGHT, MUTEX = 3, 4, 5, 6, 7

source_info_dt = numpy.dtype([
    ('source_id', hdf5.vstr),          # 0
    ('grp_id', numpy.uint16),          # 1
    ('code', (numpy.bytes_, 1)),       # 2
    ('calc_time', numpy.float32),      # 3
    ('num_sites', numpy.uint32),       # 4
    ('num_ruptures', numpy.uint32),    # 5
    ('weight', numpy.float32),         # 6
    ('mutex_weight', numpy.float64),   # 7
    ('trti', numpy.uint8),             # 8
])

checksum = operator.attrgetter('checksum')


[docs]def check_unique(ids, msg='', strict=True): """ Raise a DuplicatedID exception if there are duplicated IDs """ if isinstance(ids, dict): # ids by key all_ids = sum(ids.values(), []) unique, counts = numpy.unique(all_ids, return_counts=True) for dupl in unique[counts > 1]: keys = [k for k in ids if dupl in ids[k]] if keys: errmsg = '%r appears in %s %s' % (dupl, keys, msg) if strict: raise nrml.DuplicatedID(errmsg) else: logging.info('*' * 60 + ' DuplicatedID:\n' + errmsg) return unique, counts = numpy.unique(ids, return_counts=True) for u, c in zip(unique, counts): if c > 1: errmsg = '%r appears %d times %s' % (u, c, msg) if strict: raise nrml.DuplicatedID(errmsg) else: logging.info('*' * 60 + ' DuplicatedID:\n' + errmsg)
[docs]def gzpik(obj): """ gzip and pickle a python object """ gz = gzip.compress(pickle.dumps(obj, pickle.HIGHEST_PROTOCOL)) return numpy.frombuffer(gz, numpy.uint8)
[docs]def mutex_by_grp(src_groups): """ :returns: a composite array with boolean fields src_mutex, rup_mutex """ lst = [] for sg in src_groups: lst.append((sg.src_interdep == 'mutex', sg.rup_interdep == 'mutex')) return numpy.array(lst, [('src_mutex', bool), ('rup_mutex', bool)])
[docs]def build_rup_mutex(src_groups): """ :returns: a composite array with fields (grp_id, src_id, rup_id, weight) """ lst = [] dtlist = [('grp_id', numpy.uint16), ('src_id', numpy.uint32), ('rup_id', numpy.int64), ('weight', numpy.float64)] for sg in src_groups: if sg.rup_interdep == 'mutex': for src in sg: for i, (rup, _) in enumerate(src.data): lst.append((src.grp_id, src.id, i, rup.weight)) return numpy.array(lst, dtlist)
[docs]def create_source_info(csm, h5): """ Creates source_info, source_wkt, trt_smrs, toms """ data = {} # src_id -> row wkts = [] lens = [] for srcid, srcs in general.groupby( csm.get_sources(), basename).items(): src = srcs[0] num_ruptures = sum(src.num_ruptures for src in srcs) mutex = getattr(src, 'mutex_weight', 0) trti = csm.full_lt.trti.get(src.tectonic_region_type, 0) if src.code == b'p': code = b'p' else: code = csm.code.get(srcid, b'P') lens.append(len(src.trt_smrs)) row = [srcid, src.grp_id, code, 0, 0, num_ruptures, src.weight, mutex, trti] wkts.append(getattr(src, '_wkt', '')) data[srcid] = row logging.info('There are %d groups and %d sources with len(trt_smrs)=%.2f', len(csm.src_groups), len(data), numpy.mean(lens)) csm.source_info = data # src_id -> row num_srcs = len(csm.source_info) # avoid hdf5 damned bug by creating source_info in advance h5.create_dataset('source_info', (num_srcs,), source_info_dt) h5['mutex_by_grp'] = mutex_by_grp(csm.src_groups) h5['rup_mutex'] = build_rup_mutex(csm.src_groups) h5['source_wkt'] = numpy.array(wkts, hdf5.vstr)
[docs]def trt_smrs(src): return tuple(src.trt_smrs)
[docs]def read_source_model(fname, branch, converter, monitor): """ :param fname: path to a source model XML file :param branch: source model logic tree branch ID :param converter: SourceConverter :param monitor: a Monitor instance :returns: a SourceModel instance """ [sm] = nrml.read_source_models([fname], converter) sm.branch = branch return {fname: sm}
# NB: in classical this is called after reduce_sources, so ";" is not # added if the same source appears multiple times, len(srcs) == 1 def _fix_dupl_ids(src_groups): sources = general.AccumDict(accum=[]) for sg in src_groups: for src in sg.sources: sources[src.source_id].append(src) for src_id, srcs in sources.items(): if len(srcs) > 1: # happens in logictree/case_01/rup.ini for i, src in enumerate(srcs): src.source_id = '%s;%d' % (src.source_id, i)
[docs]def check_duplicates(smdict, strict): # check_duplicates in the same file for sm in smdict.values(): srcids = [] for sg in sm.src_groups: srcids.extend(src.source_id for src in sg) if sg.src_interdep == 'mutex': # mutex sources in the same group must have all the same # basename, i.e. the colon convention must be used basenames = set(map(basename, sg)) assert len(basenames) == 1, basenames check_unique(srcids, 'in ' + sm.fname, strict) # check duplicates in different files but in the same branch # the problem was discovered in the DOM model for branch, sms in general.groupby(smdict.values(), bybranch).items(): srcids = general.AccumDict(accum=[]) fnames = [] for sm in sms: if isinstance(sm, nrml.GeometryModel): # the section IDs are not checked since they not count # as real sources continue for sg in sm.src_groups: srcids[sm.fname].extend(src.source_id for src in sg) fnames.append(sm.fname) check_unique(srcids, 'in branch %s' % branch, strict=strict) found = find_false_duplicates(smdict) if found: logging.warning('Found different sources with same ID %s', general.shortlist(found))
[docs]def get_csm(oq, full_lt, dstore=None): """ Build source models from the logic tree and to store them inside the `source_full_lt` dataset. """ converter = sourceconverter.SourceConverter( oq.investigation_time, oq.rupture_mesh_spacing, oq.complex_fault_mesh_spacing, oq.width_of_mfd_bin, oq.area_source_discretization, oq.minimum_magnitude, oq.source_id, discard_trts=[s.strip() for s in oq.discard_trts.split(',')], floating_x_step=oq.floating_x_step, floating_y_step=oq.floating_y_step, source_nodes=oq.source_nodes, infer_occur_rates=oq.infer_occur_rates) full_lt.ses_seed = oq.ses_seed logging.info('Reading the source model(s) in parallel') # NB: the source models file must be in the shared directory # NB: dstore is None in logictree_test.py allargs = [] sdata = full_lt.source_model_lt.source_data allpaths = set(full_lt.source_model_lt.info.smpaths) dic = general.group_array(sdata, 'fname') smpaths = [] for fname, rows in dic.items(): path = os.path.abspath( os.path.join(full_lt.source_model_lt.basepath, fname)) smpaths.append(path) allargs.append((path, rows[0]['branch'], converter)) for path in allpaths - set(smpaths): # geometry models allargs.append((path, '', converter)) smdict = parallel.Starmap(read_source_model, allargs, h5=dstore if dstore else None).reduce() smdict = {k: smdict[k] for k in sorted(smdict)} parallel.Starmap.shutdown() # save memory check_duplicates(smdict, strict=oq.disagg_by_src) fix_geometry_sections(smdict, dstore) logging.info('Applying uncertainties') groups = _build_groups(full_lt, smdict) # checking the changes changes = sum(sg.changes for sg in groups) if changes: logging.info('Applied {:_d} changes to the composite source model'. format(changes)) is_event_based = oq.calculation_mode.startswith(('event_based', 'ebrisk')) if oq.sites and len(oq.sites) == 1: # disable wkt in single-site calculations to avoid excessive slowdown set_wkt = False else: set_wkt = True logging.info('Setting src._wkt') csm = _get_csm(full_lt, groups, is_event_based, set_wkt) out = [] probs = [] for sg in csm.src_groups: if sg.src_interdep == 'mutex' and 'src_mutex' not in dstore: segments = [] for src in sg: segments.append(int(src.source_id.split(':')[1])) t = (src.source_id, src.grp_id, src.count_ruptures(),src.mutex_weight) out.append(t) probs.append((src.grp_id, sg.grp_probability)) assert len(segments) == len(set(segments)), segments if out: dtlist = [('src_id', hdf5.vstr), ('grp_id', int), ('num_ruptures', int), ('mutex_weight', float)] dstore.create_dset('src_mutex', numpy.array(out, dtlist), fillvalue=None) lst = [('grp_id', int), ('probability', float)] dstore.create_dset('grp_probability', numpy.array(probs, lst), fillvalue=None) return csm
[docs]def add_checksums(srcs): """ Build and attach a checksum to each source """ for src in srcs: dic = {k: v for k, v in vars(src).items() if k not in 'source_id trt_smr smweight samples branch'} src.checksum = zlib.adler32(pickle.dumps(dic, protocol=4))
# called before _fix_dupl_ids
[docs]def find_false_duplicates(smdict): """ Discriminate different sources with same ID (false duplicates) and put a question mark in their source ID """ acc = general.AccumDict(accum=[]) atomic = set() for smodel in smdict.values(): for sgroup in smodel.src_groups: for src in sgroup: src.branch = smodel.branch srcid = (src.source_id if sgroup.atomic else basename(src)) acc[srcid].append(src) if sgroup.atomic: atomic.add(src.source_id) found = [] for srcid, srcs in acc.items(): if len(srcs) > 1: # duplicated ID if any(src.source_id in atomic for src in srcs): raise RuntimeError('Sources in atomic groups cannot be ' 'duplicated: %s', srcid) if any(getattr(src, 'mutex_weight', 0) for src in srcs): raise RuntimeError('Mutually exclusive sources cannot be ' 'duplicated: %s', srcid) add_checksums(srcs) gb = general.AccumDict(accum=[]) for src in srcs: gb[checksum(src)].append(src) if len(gb) > 1: for same_checksum in gb.values(): for src in same_checksum: src.source_id += '!%s' % src.branch found.append(srcid) return found
[docs]def fix_geometry_sections(smdict, dstore): """ If there are MultiFaultSources, fix the sections according to the GeometryModels (if any). """ gmodels = [] smodels = [] gfiles = [] for fname, mod in smdict.items(): if isinstance(mod, nrml.GeometryModel): gmodels.append(mod) gfiles.append(fname) elif isinstance(mod, nrml.SourceModel): smodels.append(mod) else: raise RuntimeError('Unknown model %s' % mod) # merge and reorder the sections sec_ids = [] sections = {} for gmod in gmodels: sec_ids.extend(gmod.sections) sections.update(gmod.sections) check_unique(sec_ids, 'section ID in files ' + ' '.join(gfiles)) if sections: # save in the temporary file assert dstore, ('You forgot to pass the dstore to ' 'get_composite_source_model') mfsources = [] for smod in smodels: for sg in smod.src_groups: for src in sg: if src.code == b'F': mfsources.append(src) save(mfsources, sections, dstore.tempname)
def _groups_ids(smlt_dir, smdict, fnames): # extract the source groups and ids from a sequence of source files groups = [] for fname in fnames: fullname = os.path.abspath(os.path.join(smlt_dir, fname)) groups.extend(smdict[fullname].src_groups) return groups, set(src.source_id for grp in groups for src in grp) def _build_groups(full_lt, smdict): # build all the possible source groups from the full logic tree smlt_file = full_lt.source_model_lt.filename smlt_dir = os.path.dirname(smlt_file) groups = [] frac = 1. / len(full_lt.sm_rlzs) for rlz in full_lt.sm_rlzs: src_groups, source_ids = _groups_ids( smlt_dir, smdict, rlz.value[0].split()) bset_values = full_lt.source_model_lt.bset_values(rlz.lt_path) while (bset_values and bset_values[0][0].uncertainty_type == 'extendModel'): (bset, value), *bset_values = bset_values extra, extra_ids = _groups_ids(smlt_dir, smdict, value.split()) common = source_ids & extra_ids if common: raise InvalidFile( '%s contains source(s) %s already present in %s' % (value, common, rlz.value)) src_groups.extend(extra) for src_group in src_groups: sg = apply_uncertainties(bset_values, src_group) full_lt.set_trt_smr(sg, smr=rlz.ordinal) for src in sg: # the smweight is used in event based sampling: # see oq-risk-tests etna src.smweight = rlz.weight if full_lt.num_samples else frac if rlz.samples > 1: src.samples = rlz.samples groups.append(sg) # check applyToSources sm_branch = rlz.lt_path[0] src_id = full_lt.source_model_lt.info.applytosources[sm_branch] for srcid in src_id: if srcid not in source_ids: raise ValueError( "The source %s is not in the source model," " please fix applyToSources in %s or the " "source model(s) %s" % (srcid, smlt_file, rlz.value[0].split())) return groups
[docs]def reduce_sources(sources_with_same_id, full_lt): """ :param sources_with_same_id: a list of sources with the same source_id :returns: a list of truly unique sources, ordered by trt_smr """ out = [] add_checksums(sources_with_same_id) for srcs in general.groupby(sources_with_same_id, checksum).values(): # duplicate sources: same id, same checksum src = srcs[0] if len(srcs) > 1: # happens in logictree/case_07 src.trt_smr = tuple(s.trt_smr for s in srcs) else: src.trt_smr = src.trt_smr, out.append(src) out.sort(key=operator.attrgetter('trt_smr')) return out
def _get_csm(full_lt, groups, event_based, set_wkt): # 1. extract a single source from multiple sources with the same ID # 2. regroup the sources in non-atomic groups by TRT # 3. reorder the sources by source_id atomic = [] acc = general.AccumDict(accum=[]) for grp in groups: if grp and grp.atomic: atomic.append(grp) elif grp: acc[grp.trt].extend(grp) key = operator.attrgetter('source_id', 'code') src_groups = [] for trt in acc: lst = [] for srcs in general.groupby(acc[trt], key).values(): # NB: not reducing the sources in event based if len(srcs) > 1 and not event_based: srcs = reduce_sources(srcs, full_lt) lst.extend(srcs) for sources in general.groupby(lst, trt_smrs).values(): if set_wkt: # set ._wkt attribute (for later storage in the source_wkt # dataset); this is slow msg = ('src "{}" has {:_d} underlying meshes with a total ' 'of {:_d} points!') for src in [s for s in sources if s.code == b'N']: # check on NonParametricSources mesh_size = getattr(src, 'mesh_size', 0) if mesh_size > 1E6: logging.warning(msg.format( src.source_id, src.count_ruptures(), mesh_size)) src._wkt = src.wkt() src_groups.append(sourceconverter.SourceGroup(trt, sources)) if set_wkt: for ag in atomic: for src in ag: src._wkt = src.wkt() src_groups.extend(atomic) _fix_dupl_ids(src_groups) # optionally sample the sources ss = os.environ.get('OQ_SAMPLE_SOURCES') for sg in src_groups: sg.sources.sort(key=operator.attrgetter('source_id')) if ss: srcs = [] for src in sg: srcs.extend(calc.filters.split_source(src)) sg.sources = general.random_filter(srcs, float(ss)) or [srcs[0]] return CompositeSourceModel(full_lt, src_groups)
[docs]class CompositeSourceModel: """ :param full_lt: a :class:`FullLogicTree` instance :param src_groups: a list of SourceGroups :param event_based: a flag True for event based calculations, flag otherwise """ def __init__(self, full_lt, src_groups): self.src_groups = src_groups self.init(full_lt)
[docs] def init(self, full_lt): self.full_lt = full_lt self.gsim_lt = full_lt.gsim_lt self.source_model_lt = full_lt.source_model_lt self.sm_rlzs = full_lt.sm_rlzs # initialize the code dictionary self.code = {} # srcid -> code for grp_id, sg in enumerate(self.src_groups): assert len(sg) # sanity check for src in sg: src.grp_id = grp_id if src.code != b'P': source_id = basename(src) self.code[source_id] = src.code
[docs] def get_trt_smrs(self): """ :returns: an array of trt_smrs (to be stored as an hdf5.vuint32 array) """ keys = [sg.sources[0].trt_smrs for sg in self.src_groups] assert len(keys) < TWO16, len(keys) return [numpy.array(trt_smrs, numpy.uint32) for trt_smrs in keys]
[docs] def get_sources(self, atomic=None): """ There are 3 options: atomic == None => return all the sources (default) atomic == True => return all the sources in atomic groups atomic == True => return all the sources not in atomic groups """ srcs = [] for src_group in self.src_groups: if atomic is None: # get all sources srcs.extend(src_group) elif atomic == src_group.atomic: srcs.extend(src_group) return srcs
[docs] def get_basenames(self): """ :returns: a sorted list of source names stripped of the suffixes """ sources = set() for src in self.get_sources(): sources.add(basename(src, ';:.').split('!')[0]) return sorted(sources)
[docs] def get_mags_by_trt(self, maximum_distance): """ :param maximum_distance: dictionary trt -> magdist interpolator :returns: a dictionary trt -> magnitudes in the sources as strings """ mags = general.AccumDict(accum=set()) # trt -> mags for sg in self.src_groups: for src in sg: mags[sg.trt].update(src.get_magstrs()) out = {} for trt in mags: minmag = maximum_distance(trt).x[0] out[trt] = sorted(m for m in mags[trt] if float(m) >= minmag) return out
[docs] def get_floating_spinning_factors(self): """ :returns: (floating rupture factor, spinning rupture factor) """ data = [] for sg in self.src_groups: for src in sg: if hasattr(src, 'hypocenter_distribution'): data.append( (len(src.hypocenter_distribution.data), len(src.nodal_plane_distribution.data))) if not data: return numpy.array([1, 1]) return numpy.array(data).mean(axis=0)
[docs] def update_source_info(self, source_data): """ Update (eff_ruptures, num_sites, calc_time) inside the source_info """ assert len(source_data) < TWO24, len(source_data) for src_id, nsites, weight, ctimes in python3compat.zip( source_data['src_id'], source_data['nsites'], source_data['weight'], source_data['ctimes']): baseid = basename(src_id) row = self.source_info[baseid] row[CALC_TIME] += ctimes row[WEIGHT] += weight row[NUM_SITES] += nsites
[docs] def count_ruptures(self): """ Call src.count_ruptures() on each source. Slow. """ n = 0 for src in self.get_sources(): n += src.count_ruptures() return n
[docs] def fix_src_offset(self): """ Set the src.offset field for each source """ src_id = 0 for srcs in general.groupby(self.get_sources(), basename).values(): offset = 0 if len(srcs) > 1: # order by split number srcs.sort(key=fragmentno) for src in srcs: src.id = src_id src.offset = offset if not src.num_ruptures: src.num_ruptures = src.count_ruptures() offset += src.num_ruptures if src.num_ruptures >= TWO30: raise ValueError( '%s contains more than 2**30 ruptures' % src) # print(src, src.offset, offset) src_id += 1
[docs] def get_max_weight(self, oq): # used in preclassical """ :param oq: an OqParam instance :returns: total weight and max weight of the sources """ srcs = self.get_sources() tot_weight = 0 nr = 0 for src in srcs: nr += src.num_ruptures tot_weight += src.weight if src.code == b'C' and src.num_ruptures > 20_000: msg = ('{} is suspiciously large, containing {:_d} ' 'ruptures with complex_fault_mesh_spacing={} km') spc = oq.complex_fault_mesh_spacing logging.info(msg.format(src, src.num_ruptures, spc)) assert tot_weight max_weight = tot_weight / (oq.concurrent_tasks or 1) logging.info('tot_weight={:_d}, max_weight={:_d}, num_sources={:_d}'. format(int(tot_weight), int(max_weight), len(srcs))) heavy = [src for src in srcs if src.weight > max_weight] for src in sorted(heavy, key=lambda s: s.weight, reverse=True): logging.info('%s', src) if not heavy: maxsrc = max(srcs, key=lambda s: s.weight) logging.info('Heaviest: %s', maxsrc) return max_weight
def __toh5__(self): G = len(self.src_groups) arr = numpy.zeros(G + 1, hdf5.vuint8) for grp_id, grp in enumerate(self.src_groups): arr[grp_id] = gzpik(grp) arr[G] = gzpik(self.source_info) size = sum(len(val) for val in arr) logging.info(f'Storing {general.humansize(size)} ' 'of CompositeSourceModel') return arr, {} # tested in case_36 def __fromh5__(self, arr, attrs): objs = [pickle.loads(gzip.decompress(a.tobytes())) for a in arr] self.src_groups = objs[:-1] self.source_info = objs[-1] def __repr__(self): """ Return a string representation of the composite model """ contents = [] for sg in self.src_groups: arr = numpy.array(_strip_colons(sg)) line = f'grp_id={sg.sources[0].grp_id} {arr}' contents.append(line) return '<%s\n%s>' % (self.__class__.__name__, '\n'.join(contents))
def _strip_colons(sources): ids = set() for src in sources: if ':' in src.source_id: ids.add(src.source_id.split(':')[0]) else: ids.add(src.source_id) return sorted(ids)