Source code for openquake.hazardlib.source.rupture

# coding: utf-8
# The Hazard Library
# Copyright (C) 2012-2023 GEM Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
Module :mod:`openquake.hazardlib.source.rupture` defines classes
:class:`BaseRupture` and its subclasses
:class:`NonParametricProbabilisticRupture` and
:class:`ParametricProbabilisticRupture`
"""
import abc
import numpy
import math
import itertools
import json
from openquake.baselib import general, hdf5
from openquake.hazardlib import geo
from openquake.hazardlib.geo.nodalplane import NodalPlane
from openquake.hazardlib.geo.mesh import (
    Mesh, RectangularMesh, surface_to_arrays)
from openquake.hazardlib.geo.point import Point
from openquake.hazardlib.geo.geodetic import geodetic_distance
from openquake.hazardlib.near_fault import (
    get_plane_equation, projection_pp, directp, average_s_rad, isochone_ratio)
from openquake.hazardlib.geo.surface import BaseSurface, PlanarSurface

U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
I64 = numpy.int64
F32 = numpy.float32
F64 = numpy.float64
TWO16 = 2 ** 16
TWO24 = 2 ** 24
TWO30 = 2 ** 30
TWO32 = 2 ** 32

pmf_dt = numpy.dtype([
    ('prob', float),
    ('occ', U32)])

events_dt = numpy.dtype([
    ('id', U32),
    ('rup_id', I64),
    ('rlz_id', U16)])

rup_dt = numpy.dtype([
    ('seed', U32),
    ('mag', F32),
    ('rake', F32),
    ('lon', F32),
    ('lat', F32),
    ('dep', F32),
    ('multiplicity', U32),
    ('trt', hdf5.vstr),
    ('kind', hdf5.vstr),
    ('mesh', hdf5.vstr),
    ('extra', hdf5.vstr)])

rupture_dt = numpy.dtype([
    ('id', I64),
    ('seed', I64),
    ('source_id', U32),
    ('trt_smr', U32),
    ('code', U8),
    ('n_occ', U32),
    ('mag', F32),
    ('rake', F32),
    ('occurrence_rate', F32),
    ('minlon', F32),
    ('minlat', F32),
    ('maxlon', F32),
    ('maxlat', F32),
    ('hypo', (F32, 3)),
    ('geom_id', U32),
    ('nsites', U32),
    ('e0', U32)])

code2cls = {}


[docs]def to_csv_array(ebruptures): """ :param ebruptures: a list of EBRuptures :returns: an array suitable for serialization in CSV """ if not code2cls: code2cls.update(BaseRupture.init()) arr = numpy.zeros(len(ebruptures), rup_dt) for rec, ebr in zip(arr, ebruptures): rup = ebr.rupture # s0=number of multi surfaces, s1=number of rows, s2=number of columns arrays = surface_to_arrays(rup.surface) # shape (s0, 3, s1, s2) rec['seed'] = ebr.seed rec['mag'] = rup.mag rec['rake'] = rup.rake rec['lon'] = rup.hypocenter.x rec['lat'] = rup.hypocenter.y rec['dep'] = rup.hypocenter.z rec['multiplicity'] = rup.multiplicity rec['trt'] = rup.tectonic_region_type rec['kind'] = ' '.join(cls.__name__ for cls in code2cls[rup.code]) rec['mesh'] = json.dumps( [[[[float5(z) for z in y] for y in x] for x in array] for array in arrays]) extra = {} if hasattr(rup, 'probs_occur'): extra['probs_occur'] = rup.probs_occur else: extra['occurrence_rate'] = rup.occurrence_rate if hasattr(rup, 'weight'): extra['weight'] = rup.weight _fixfloat32(extra) rec['extra'] = json.dumps(extra) return arr
[docs]def to_arrays(geom): """ :param geom: an array [num_surfaces, shape_y, shape_z ..., coords] :returns: a list of num_surfaces arrays with shape (3, shape_y, shape_z) """ arrays = [] num_surfaces = int(geom[0]) start = num_surfaces * 2 + 1 for i in range(1, 2 * num_surfaces, 2): s1, s2 = int(geom[i]), int(geom[i + 1]) size = s1 * s2 * 3 array = geom[start:start + size].reshape(3, s1, s2) arrays.append(array) start += size return arrays
[docs]def get_ebr(rec, geom, trt): """ Convert a rupture record plus geometry into an EBRupture instance """ # rec: a dictionary or a record # geom: if any, an array of floats32 convertible into a mesh # NB: not implemented: rupture_slip_direction if not code2cls: code2cls.update(BaseRupture.init()) # build surface arrays = to_arrays(geom) mesh = arrays[0] rupture_cls, surface_cls = code2cls[rec['code']] surface = object.__new__(surface_cls) if surface_cls is geo.PlanarSurface: surface = geo.PlanarSurface.from_array(mesh[:, 0, :]) elif surface_cls is geo.MultiSurface: if all(array.shape == (3, 1, 4) for array in arrays): # for PlanarSurfaces each array has shape (3, 1, 4) surface.__init__([ geo.PlanarSurface.from_array(array[:, 0, :]) for array in arrays]) else: # assume KiteSurfaces surface.__init__([geo.KiteSurface(RectangularMesh(*array)) for array in arrays]) elif surface_cls is geo.GriddedSurface: # fault surface, strike and dip will be computed surface.strike = surface.dip = None surface.mesh = Mesh(*mesh) else: # fault surface, strike and dip will be computed surface.strike = surface.dip = None surface.__init__(RectangularMesh(*mesh)) # build rupture rupture = object.__new__(rupture_cls) rupture.seed = rec['seed'] rupture.surface = surface rupture.mag = rec['mag'] rupture.rake = rec['rake'] rupture.hypocenter = geo.Point(*rec['hypo']) rupture.occurrence_rate = rec['occurrence_rate'] try: rupture.probs_occur = rec['probs_occur'] except (KeyError, ValueError): # rec can be a numpy record pass rupture.tectonic_region_type = trt rupture.multiplicity = rec['n_occ'] # build EBRupture ebr = EBRupture(rupture, rec['source_id'], rec['trt_smr'], rec['n_occ'], rec['id'] % TWO30, rec['e0']) ebr.seed = rec['seed'] return ebr
[docs]def float5(x): # a float with 5 digits return round(float(x), 5)
def _fixfloat32(dic): # work around a TOML/numpy issue for k, v in dic.items(): if isinstance(v, F32): dic[k] = float5(v) elif isinstance(v, tuple): dic[k] = [float5(x) for x in v] elif isinstance(v, numpy.ndarray): if len(v.shape) == 3: # 3D array dic[k] = [[[float5(z) for z in y] for y in x] for x in v] elif len(v.shape) == 2: # 2D array dic[k] = [[float5(y) for y in x] for x in v] elif len(v.shape) == 1: # 1D array dic[k] = [float5(x) for x in v] else: raise NotImplementedError
[docs]def to_checksum8(cls1, cls2): """ Convert a pair of classes into a numeric code (uint8) """ names = '%s,%s' % (cls1.__name__, cls2.__name__) return sum(map(ord, names)) % 256
[docs]class BaseRupture(metaclass=abc.ABCMeta): """ Rupture object represents a single earthquake rupture. :param mag: Magnitude of the rupture. :param rake: Rake value of the rupture. See :class:`~openquake.hazardlib.geo.nodalplane.NodalPlane`. :param tectonic_region_type: Rupture's tectonic regime. One of constants in :class:`openquake.hazardlib.const.TRT`. :param hypocenter: A :class:`~openquake.hazardlib.geo.point.Point`, rupture's hypocenter. :param surface: An instance of subclass of :class:`~openquake.hazardlib.geo.surface.base.BaseSurface`. Object representing the rupture surface geometry. :param rupture_slip_direction: Angle describing rupture propagation direction in decimal degrees. :raises ValueError: If magnitude value is not positive, or tectonic region type is unknown. NB: if you want to convert the rupture into XML, you should set the attribute surface_nodes to an appropriate value. """ _code = {}
[docs] @classmethod def init(cls): """ Initialize the class dictionary `._code` by encoding the bidirectional correspondence between an integer in the range 0..255 (the code) and a pair of classes (rupture_class, surface_class). This is useful when serializing the rupture to and from HDF5. :returns: {code: pair of classes} """ rupture_classes = [BaseRupture] + list( general.gen_subclasses(BaseRupture)) surface_classes = list(general.gen_subclasses(BaseSurface)) code2cls = {} BaseRupture.str2code = {} for rup, sur in itertools.product(rupture_classes, surface_classes): chk = to_checksum8(rup, sur) if chk in code2cls and code2cls[chk] != (rup, sur): raise ValueError('Non-unique checksum %d for %s, %s' % (chk, rup, sur)) cls._code[rup, sur] = chk code2cls[chk] = rup, sur BaseRupture.str2code['%s %s' % (rup.__name__, sur.__name__)] = chk return code2cls
def __init__(self, mag, rake, tectonic_region_type, hypocenter, surface, rupture_slip_direction=None, weight=None): if not mag > 0: raise ValueError('magnitude must be positive') NodalPlane.check_rake(rake) self.tectonic_region_type = tectonic_region_type self.rake = rake self.mag = mag self.hypocenter = hypocenter self.surface = surface self.rupture_slip_direction = rupture_slip_direction self.ruid = None @property def hypo_depth(self): """Returns the hypocentral depth""" return self.hypocenter.z @property def code(self): """Returns the code (integer in the range 0 .. 255) of the rupture""" return self._code[self.__class__, self.surface.__class__]
[docs] def size(self): """ Dummy method for compatibility with the RuptureContext. :returns: 1 """ return 1
[docs] def sample_number_of_occurrences(self, n, rng): """ Randomly sample number of occurrences from temporal occurrence model probability distribution. .. note:: This method is using random numbers. In order to reproduce the same results numpy random numbers generator needs to be seeded, see http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html :returns: numpy array of size n with number of rupture occurrences """ raise NotImplementedError
[docs]class NonParametricProbabilisticRupture(BaseRupture): """ Probabilistic rupture for which the probability distribution for rupture occurrence is described through a generic probability mass function. :param pmf: Instance of :class:`openquake.hazardlib.pmf.PMF`. Values in the abscissae represent number of rupture occurrences (in increasing order, staring from 0) and values in the ordinates represent associated probabilities. Example: if, for a given time span, a rupture has probability ``0.8`` to not occurr, ``0.15`` to occur once, and ``0.05`` to occur twice, the ``pmf`` can be defined as :: pmf = PMF([(0.8, 0), (0.15, 1), 0.05, 2)]) :raises ValueError: If number of ruptures in ``pmf`` do not start from 0, are not defined in increasing order, and if they are not defined with unit step """ def __init__(self, mag, rake, tectonic_region_type, hypocenter, surface, pmf, rupture_slip_direction=None, weight=None): occ = numpy.array([occ for (prob, occ) in pmf.data]) if not occ[0] == 0: raise ValueError('minimum number of ruptures must be zero') if not numpy.all(numpy.sort(occ) == occ): raise ValueError( 'numbers of ruptures must be defined in increasing order') if not numpy.all(numpy.diff(occ) == 1): raise ValueError( 'numbers of ruptures must be defined with unit step') super().__init__( mag, rake, tectonic_region_type, hypocenter, surface, rupture_slip_direction, weight) # an array of probabilities with sum 1 self.probs_occur = numpy.array([prob for (prob, occ) in pmf.data]) if weight is not None: self.weight = weight
[docs] def sample_number_of_occurrences(self, n, rng): """ See :meth:`superclass method <.rupture.BaseRupture.sample_number_of_occurrences>` for spec of input and result values. Uses 'Inverse Transform Sampling' method. """ # compute cdf from pmf cdf = numpy.cumsum(self.probs_occur) n_occ = numpy.digitize(rng.random(n), cdf) return n_occ
[docs]class ParametricProbabilisticRupture(BaseRupture): """ :class:`Rupture` associated with an occurrence rate and a temporal occurrence model. :param occurrence_rate: Number of times rupture happens per year. :param temporal_occurrence_model: Temporal occurrence model assigned for this rupture. Should be an instance of :class:`openquake.hazardlib.tom.PoissonTOM`. :raises ValueError: If occurrence rate is not positive. """ def __init__(self, mag, rake, tectonic_region_type, hypocenter, surface, occurrence_rate, temporal_occurrence_model, rupture_slip_direction=None): if not occurrence_rate > 0: raise ValueError('occurrence rate must be positive') super().__init__( mag, rake, tectonic_region_type, hypocenter, surface, rupture_slip_direction) self.temporal_occurrence_model = temporal_occurrence_model self.occurrence_rate = occurrence_rate
[docs] def get_probability_one_or_more_occurrences(self): """ Return the probability of this rupture to occur one or more times. Uses :meth:`~openquake.hazardlib.tom.PoissonTOM.get_probability_one_or_more_occurrences` of an assigned temporal occurrence model. """ tom = self.temporal_occurrence_model rate = self.occurrence_rate return tom.get_probability_one_or_more_occurrences(rate)
[docs] def get_probability_one_occurrence(self): """ Return the probability of this rupture to occur exactly one time. Uses :meth: `openquake.hazardlib.tom.PoissonTOM.get_probability_n_occurrences` of an assigned temporal occurrence model. """ tom = self.temporal_occurrence_model rate = self.occurrence_rate return tom.get_probability_n_occurrences(rate, 1)
[docs] def sample_number_of_occurrences(self, n, rng): """ Draw a random sample from the distribution and return a number of events to occur as an array of integers of size n. Uses :meth: `openquake.hazardlib.tom.PoissonTOM.sample_number_of_occurrences` of an assigned temporal occurrence model. """ r = self.occurrence_rate * self.temporal_occurrence_model.time_span return rng.poisson(r, n)
[docs] def get_dppvalue(self, site): """ Get the directivity prediction value, DPP at a given site as described in Spudich et al. (2013). :param site: :class:`~openquake.hazardlib.geo.point.Point` object representing the location of the target site :returns: A float number, directivity prediction value (DPP). """ origin = self.surface.get_resampled_top_edge()[0] dpp_multi = [] index_patch = self.surface.hypocentre_patch_index( self.hypocenter, self.surface.get_resampled_top_edge(), self.surface.mesh.depths[0][0], self.surface.mesh.depths[-1][0], self.surface.get_dip()) idx_nxtp = True hypocenter = self.hypocenter while idx_nxtp: # E Plane Calculation p0, p1, p2, p3 = self.surface.get_fault_patch_vertices( self.surface.get_resampled_top_edge(), self.surface.mesh.depths[0][0], self.surface.mesh.depths[-1][0], self.surface.get_dip(), index_patch=index_patch) [normal, dist_to_plane] = get_plane_equation( p0, p1, p2, origin) pp = projection_pp(site, normal, dist_to_plane, origin) pd, e, idx_nxtp = directp( p0, p1, p2, p3, hypocenter, origin, pp) pd_geo = origin.point_at( (pd[0] ** 2 + pd[1] ** 2) ** 0.5, -pd[2], numpy.degrees(math.atan2(pd[0], pd[1]))) # determine the lower bound of E path value f1 = geodetic_distance(p0.longitude, p0.latitude, p1.longitude, p1.latitude) f2 = geodetic_distance(p2.longitude, p2.latitude, p3.longitude, p3.latitude) if f1 > f2: f = f1 else: f = f2 fs, rd, r_hyp = average_s_rad(site, hypocenter, origin, pp, normal, dist_to_plane, e, p0, p1, self.rupture_slip_direction) cprime = isochone_ratio(e, rd, r_hyp) dpp_exp = cprime * numpy.maximum(e, 0.1 * f) *\ numpy.maximum(fs, 0.2) dpp_multi.append(dpp_exp) # check if go through the next patch of the fault index_patch = index_patch + 1 if (len(self.surface.get_resampled_top_edge()) <= 2) and (index_patch >= len(self.surface.get_resampled_top_edge())): idx_nxtp = False elif index_patch >= len(self.surface.get_resampled_top_edge()): idx_nxtp = False elif idx_nxtp: hypocenter = pd_geo idx_nxtp = True # calculate DPP value of the site. dpp = numpy.log(numpy.sum(dpp_multi)) return dpp
[docs] def get_cdppvalue(self, target, buf=1.0, delta=0.01, space=2.): """ Get the directivity prediction value, centered DPP(cdpp) at a given site as described in Spudich et al. (2013), and this cdpp is used in Chiou and Young (2014) GMPE for near-fault directivity term prediction. :param target_site: A mesh object representing the location of the target sites. :param buf: A buffer distance in km to extend the mesh borders :param delta: The distance between two adjacent points in the mesh :param space: The tolerance for the distance of the sites (default 2 km) :returns: The centered directivity prediction value of Chiou and Young """ min_lon, max_lon, max_lat, min_lat = self.surface.get_bounding_box() min_lon -= buf max_lon += buf min_lat -= buf max_lat += buf lons = numpy.arange(min_lon, max_lon + delta, delta) # ex shape (233,) lats = numpy.arange(min_lat, max_lat + delta, delta) # ex shape (204,) mesh = RectangularMesh(*numpy.meshgrid(lons, lats)) mesh_rup = self.surface.get_min_distance(mesh).reshape(mesh.shape) # ex shape (204, 233) target_rup = self.surface.get_min_distance(target) # ex shape (2,) cdpp = numpy.zeros_like(target.lons) for i, (target_lon, target_lat) in enumerate( zip(target.lons, target.lats)): # indices around target_rup[i] around = (mesh_rup <= target_rup[i] + space) & ( mesh_rup >= target_rup[i] - space) dpp_target = self.get_dppvalue(Point(target_lon, target_lat)) dpp_mean = numpy.mean( [self.get_dppvalue(Point(lon, lat)) for lon, lat in zip(mesh.lons[around], mesh.lats[around])]) cdpp[i] = dpp_target - dpp_mean return cdpp
[docs]class PointSurface: """ A fake surface used in PointRuptures. The parameters `hypocenter` and `strike` are determined by collapsing the corresponding parameters in the original PointSource. """ def __init__(self, hypocenter, strike, dip): self.hypocenter = hypocenter self.strike = strike self.dip = dip
[docs] def get_strike(self): return self.strike
[docs] def get_dip(self): return self.dip
[docs] def get_top_edge_depth(self): return self.hypocenter.depth
[docs] def get_width(self): return 0
[docs] def get_closest_points(self, mesh): """ :returns: N times the hypocenter if N is the number of points """ N = len(mesh) lons = numpy.full(N, self.hypocenter.x) lats = numpy.full(N, self.hypocenter.y) deps = numpy.full(N, self.hypocenter.z) return Mesh(lons, lats, deps)
[docs] def get_min_distance(self, mesh): """ :returns: the distance from the hypocenter to the mesh """ return self.hypocenter.distance_to_mesh(mesh).min()
def __bool__(self): return False
[docs]class PointRupture(ParametricProbabilisticRupture): """ A rupture coming from a far away PointSource, so that the finite size effects can be neglected. """ def __init__(self, mag, rake, tectonic_region_type, hypocenter, strike, dip, occurrence_rate, temporal_occurrence_model, zbot): self.tectonic_region_type = tectonic_region_type self.hypocenter = hypocenter self.mag = mag self.strike = strike self.rake = rake self.dip = dip self.occurrence_rate = occurrence_rate self.temporal_occurrence_model = temporal_occurrence_model self.surface = PointSurface(hypocenter, strike, dip) self.zbot = zbot # bottom edge depth, used in Campbell-Bozorgnia
[docs]def get_geom(surface, is_from_fault_source, is_multi_surface, is_gridded_surface): """ The following fields can be interpreted different ways, depending on the value of `is_from_fault_source`. If `is_from_fault_source` is True, each of these fields should contain a 2D numpy array (all of the same shape). Each triple of (lon, lat, depth) for a given index represents the node of a rectangular mesh. If `is_from_fault_source` is False, each of these fields should contain a sequence (tuple, list, or numpy array, for example) of 4 values. In order, the triples of (lon, lat, depth) represent top left, top right, bottom left, and bottom right corners of the the rupture's planar surface. Update: There is now a third case. If the rupture originated from a characteristic fault source with a multi-planar-surface geometry, `lons`, `lats`, and `depths` will contain one or more sets of 4 points, similar to how planar surface geometry is stored (see above). :param surface: a Surface instance :param is_from_fault_source: a boolean :param is_multi_surface: a boolean """ if is_from_fault_source: # for simple and complex fault sources, # rupture surface geometry is represented by a mesh surf_mesh = surface.mesh lons = surf_mesh.lons lats = surf_mesh.lats depths = surf_mesh.depths else: if is_multi_surface: # `list` of # openquake.hazardlib.geo.surface.planar.PlanarSurface # objects: surfaces = surface.surfaces # lons, lats, and depths are arrays with len == 4*N, # where N is the number of surfaces in the # multisurface for each `corner_*`, the ordering is: # - top left # - top right # - bottom left # - bottom right lons = numpy.concatenate([x.corner_lons for x in surfaces]) lats = numpy.concatenate([x.corner_lats for x in surfaces]) depths = numpy.concatenate([x.corner_depths for x in surfaces]) elif is_gridded_surface: # the surface mesh has shape (1, N) lons = surface.mesh.lons[0] lats = surface.mesh.lats[0] depths = surface.mesh.depths[0] else: # For area or point source, # rupture geometry is represented by a planar surface, # defined by 3D corner points lons = numpy.zeros((4)) lats = numpy.zeros((4)) depths = numpy.zeros((4)) # NOTE: It is important to maintain the order of these # corner points. TODO: check the ordering for i, corner in enumerate((surface.top_left, surface.top_right, surface.bottom_left, surface.bottom_right)): lons[i] = corner.longitude lats[i] = corner.latitude depths[i] = corner.depth return lons, lats, depths
[docs]class ExportedRupture(object): """ Simplified Rupture class with attributes rupid, events_by_ses, indices and others, used in export. :param rupid: rupture.seed ID :param events_by_ses: dictionary ses_idx -> event records :param indices: site indices """ def __init__(self, rupid, n_occ, events_by_ses, indices=None): self.rupid = rupid self.n_occ = n_occ self.events_by_ses = events_by_ses self.indices = indices
[docs]class EBRupture(object): """ An event based rupture. It is a wrapper over a hazardlib rupture object. :param rupture: the underlying rupture :param str source_id: ID of the source that generated the rupture :param int trt_smr: an integer describing TRT and source model realization :param int n_occ: number of occurrences of the rupture :param int e0: initial event ID (default 0) :param bool scenario: True for scenario ruptures, default False """ seed = 'NA' # set by the engine def __init__(self, rupture, source_id, trt_smr, n_occ=1, id=None, e0=0): self.rupture = rupture self.source_id = source_id self.trt_smr = trt_smr self.n_occ = n_occ self.id = source_id * TWO30 + id self.e0 = e0 @property def tectonic_region_type(self): return self.rupture.tectonic_region_type
[docs] def get_eids(self): """ :returns: an array of event IDs """ return numpy.arange(self.n_occ, dtype=U32)
def __repr__(self): return '<%s %d[%d]>' % ( self.__class__.__name__, self.id, self.n_occ)
[docs]def get_eid_rlz(rec, rlzs, scenario): """ :param rlzs: an array of realization indices :param scenario: if true distribute the rlzs evenly else randomly :returns: two arrays (eid, rlz) """ e0 = rec['e0'] n = rec['n_occ'] eid = numpy.arange(e0, e0 + n, dtype=U32) if scenario: # the rlzs are distributed evenly rlz = rlzs[numpy.arange(rec['n_occ']) // (n // len(rlzs))] else: # event_based: the rlzs are distributed randomly rlz = general.random_choice(rlzs, n, 0, rec['seed']) return eid, rlz
[docs]def get_events(recs, rlzs, scenario): """ Build the associations event_id -> rlz_id for each rup_id. :returns: a structured array with fields ('id', 'rup_id', 'rlz_id') """ n_occ = sum(rec['n_occ'] for rec in recs) out = numpy.zeros(n_occ, events_dt) start = 0 for rec in recs: n = rec['n_occ'] stop = start + n slc = out[start:stop] eid, rlz = get_eid_rlz(rec, rlzs, scenario) slc['id'] = eid slc['rlz_id'] = rlz slc['rup_id'] = rec['id'] start = stop return out
[docs]class RuptureProxy(object): """ A proxy for a rupture record. :param rec: a record with the rupture parameters """ def __init__(self, rec): self.rec = rec def __getitem__(self, name): return self.rec[name] # NB: requires the .geom attribute to be set
[docs] def to_ebr(self, trt): """ :returns: EBRupture instance associated to the underlying rupture """ return get_ebr(self.rec, self.geom, trt)
def __repr__(self): return '<%s#%d[%s], w=%d>' % ( self.__class__.__name__, self['id'], self['source_id'], self['n_occ'])
[docs]def get_ruptures(fname_csv): """ Read ruptures in CSV format and return an ArrayWrapper. :param fname_csv: path to the CSV file """ if not BaseRupture._code: BaseRupture.init() # initialize rupture codes code = BaseRupture.str2code aw = hdf5.read_csv(fname_csv, rup_dt) rups = [] geoms = [] n_occ = 1 for u, row in enumerate(aw.array): hypo = row['lon'], row['lat'], row['dep'] dic = json.loads(row['extra']) meshes = F32(json.loads(row['mesh'])) # num_surfaces 3D arrays num_surfaces = len(meshes) shapes = [] points = [] minlons = [] maxlons = [] minlats = [] maxlats = [] for mesh in meshes: shapes.extend(mesh.shape[1:]) points.extend(mesh.flatten()) # lons + lats + deps minlons.append(mesh[0].min()) minlats.append(mesh[1].min()) maxlons.append(mesh[0].max()) maxlats.append(mesh[1].max()) rec = numpy.zeros(1, rupture_dt)[0] rec['seed'] = row['seed'] rec['minlon'] = minlon = min(minlons) rec['minlat'] = minlat = min(minlats) rec['maxlon'] = maxlon = max(maxlons) rec['maxlat'] = maxlat = max(maxlats) rec['mag'] = row['mag'] rec['hypo'] = hypo rate = dic.get('occurrence_rate', numpy.nan) trt_smr = aw.trts.index(row['trt']) * TWO24 tup = (u, row['seed'], 0, trt_smr, code[row['kind']], n_occ, row['mag'], row['rake'], rate, minlon, minlat, maxlon, maxlat, hypo, u, 1, 0) rups.append(tup) geoms.append(numpy.concatenate([[num_surfaces], shapes, points])) if not rups: return () dic = dict(geom=numpy.array(geoms, object), trts=aw.trts) # NB: PMFs for nonparametric ruptures are missing return hdf5.ArrayWrapper(numpy.array(rups, rupture_dt), dic)
[docs]def get_planar(site, msr, mag, aratio, strike, dip, rake, trt, ztor=None): """ :returns: a BaseRupture with a PlanarSurface built around the site """ hc = site.location surf = PlanarSurface.from_hypocenter(hc, msr, mag, aratio, strike, dip, rake, ztor) rup = BaseRupture(mag, rake, trt, hc, surf) rup.rup_id = 0 vars(rup).update(vars(site)) return rup