# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import os.path
import logging
import numpy
import pandas
from openquake.baselib import hdf5, general
from openquake.hazardlib.stats import set_rlzs_stats
from openquake.risklib import scientific, connectivity
from openquake.commonlib import datastore, calc
from openquake.calculators import base
from openquake.calculators.event_based_risk import EventBasedRiskCalculator
from openquake.calculators.post_risk import (
get_loss_builder, fix_dtypes, PostRiskCalculator)
from openquake.calculators.export import DISPLAY_NAME
U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32
[docs]def zero_dmgcsq(A, R, crmodel):
"""
:returns: an array of zeros of shape (A, R, L, Dc)
"""
dmg_csq = crmodel.get_dmg_csq()
L = len(crmodel.loss_types)
Dc = len(dmg_csq) + 1 # damages + consequences
return numpy.zeros((A, R, L, Dc), F32)
[docs]def damage_from_gmfs(gmfslices, oqparam, dstore, monitor):
"""
:param gmfslices: an array (S, 3) with S slices (start, stop, weight)
:param oqparam: OqParam instance
:param dstore: DataStore instance from which to read the GMFs
:param monitor: a Monitor instance
:returns: a dictionary of arrays, the output of event_based_damage
"""
if dstore.parent:
dstore.parent.open('r')
dfs = []
with dstore, monitor('reading data', measuremem=True):
for gmfslice in gmfslices:
slc = slice(gmfslice[0], gmfslice[1])
dfs.append(dstore.read_df('gmf_data', slc=slc))
df = pandas.concat(dfs)
return event_based_damage(df, oqparam, dstore, monitor)
[docs]def event_based_damage(df, oqparam, dstore, monitor):
"""
:param df: a DataFrame of GMFs with fields sid, eid, gmv_X, ...
:param oqparam: parameters coming from the job.ini
:param dstore: a DataStore instance
:param monitor: a Monitor instance
:returns: (damages (eid, kid) -> LDc plus damages (A, Dc))
"""
mon_risk = monitor('computing risk', measuremem=False)
K = oqparam.K
with monitor('reading gmf_data'):
if oqparam.parentdir:
dstore = datastore.read(
oqparam.hdf5path, parentdir=oqparam.parentdir)
else:
dstore.open('r')
assetcol = dstore['assetcol']
if K:
# TODO: move this in the controller!
aggids, _ = assetcol.build_aggids(
oqparam.aggregate_by, oqparam.max_aggregations)
else:
aggids = numpy.zeros(len(assetcol), U16)
crmodel = monitor.read('crmodel')
master_seed = oqparam.master_seed
sec_sims = oqparam.secondary_simulations.items()
dmg_csq = crmodel.get_dmg_csq()
ci = {dc: i + 1 for i, dc in enumerate(dmg_csq)}
dmgcsq = zero_dmgcsq(len(assetcol), oqparam.R, crmodel)
A, R, L, Dc = dmgcsq.shape
D = len(crmodel.damage_states)
if R > 1:
allrlzs = dstore['events']['rlz_id']
loss_types = crmodel.oqparam.loss_types
assert len(loss_types) == L
float_dmg_dist = oqparam.float_dmg_dist # True by default
with mon_risk:
dddict = general.AccumDict(accum=numpy.zeros((L, Dc), F32)) # eid, kid
for sid, asset_df in assetcol.to_dframe().groupby('site_id'):
# working one site at the time
gmf_df = df[df.sid == sid]
if len(gmf_df) == 0:
continue
eids = gmf_df.eid.to_numpy()
if R > 1:
rlzs = allrlzs[eids]
if sec_sims or not float_dmg_dist:
rng = scientific.MultiEventRNG(
master_seed, numpy.unique(eids))
for prob_field, num_sims in sec_sims:
probs = gmf_df[prob_field].to_numpy() # LiqProb
if not float_dmg_dist:
dprobs = rng.boolean_dist(probs, num_sims).mean(axis=1)
for taxo, adf in asset_df.groupby('taxonomy'):
out = crmodel.get_output(adf, gmf_df)
aids = adf.index.to_numpy()
assets = adf.to_records()
if float_dmg_dist:
number = assets['value-number']
else:
number = U32(assets['value-number'])
for lti, lt in enumerate(loss_types):
fractions = out[lt]
Asid, E, D = fractions.shape
assert len(eids) == E
d3 = numpy.zeros((Asid, E, Dc), F32)
if float_dmg_dist:
d3[:, :, :D] = fractions
for a in range(Asid):
d3[a] *= number[a]
else:
# this is a performance distaster; for instance
# the Messina test in oq-risk-tests becomes 12x
# slower even if it has only 25_736 assets
d3[:, :, :D] = rng.discrete_dmg_dist(
eids, fractions, number)
# secondary perils and consequences
for a, asset in enumerate(assets):
if sec_sims:
for d in range(1, D):
# doing the mean on the secondary simulations
if float_dmg_dist:
d3[a, :, d] *= probs
else:
d3[a, :, d] *= dprobs
csq = crmodel.compute_csq(
asset, d3[a, :, :D] / number[a], lt,
oqparam.time_event)
for name, values in csq.items():
d3[a, :, ci[name]] = values
if R == 1:
dmgcsq[aids, 0, lti] += d3.sum(axis=1)
else:
for e, rlz in enumerate(rlzs):
dmgcsq[aids, rlz, lti] += d3[:, e]
tot = d3.sum(axis=0) # sum on the assets
for e, eid in enumerate(eids):
dddict[eid, K][lti] += tot[e]
if K:
for kids in aggids:
for a, aid in enumerate(aids):
dddict[eid, kids[aid]][lti] += d3[a, e]
return _dframe(dddict, ci, loss_types), dmgcsq
def _dframe(adic, ci, loss_types):
# convert {eid, kid: dd} into a DataFrame (agg_id, event_id, loss_id)
dic = general.AccumDict(accum=[])
for (eid, kid), dd in sorted(adic.items()):
for li, lt in enumerate(loss_types):
dic['agg_id'].append(kid)
dic['event_id'].append(eid)
dic['loss_id'].append(scientific.LOSSID[lt])
for sname, si in ci.items():
dic[sname].append(dd[li, si])
fix_dtypes(dic)
return pandas.DataFrame(dic)
[docs]@base.calculators.add('event_based_damage', 'scenario_damage')
class DamageCalculator(EventBasedRiskCalculator):
"""
Damage calculator
"""
core_task = event_based_damage
is_stochastic = True
precalc = 'event_based'
accept_precalc = ['scenario', 'event_based',
'event_based_risk', 'event_based_damage']
[docs] def create_avg_losses(self):
"""
Do nothing: there are no losses in the DamageCalculator
"""
[docs] def execute(self):
"""
Compute risk from GMFs or ruptures depending on what is stored
"""
oq = self.oqparam
number = self.assetcol['value-number']
num_floats = (U32(number) != number).sum()
if oq.discrete_damage_distribution and num_floats:
raise ValueError(
'The exposure contains %d non-integer asset numbers: '
'you cannot use dicrete_damage_distribution=true' % num_floats)
oq.R = self.R # 1 if collect_rlzs
oq.float_dmg_dist = not oq.discrete_damage_distribution
if oq.hazard_calculation_id:
oq.parentdir = os.path.dirname(self.datastore.ppath)
if oq.investigation_time: # event based
self.builder = get_loss_builder(self.datastore) # check
self.dmgcsq = zero_dmgcsq(len(self.assetcol), self.R, self.crmodel)
smap = calc.starmap_from_gmfs(damage_from_gmfs, oq, self.datastore,
self._monitor)
smap.monitor.save('assets', self.assetcol.to_dframe('id'))
smap.monitor.save('crmodel', self.crmodel)
return smap.reduce(self.combine)
[docs] def combine(self, acc, res):
"""
:param acc:
unused
:param res:
DataFrame with fields (event_id, agg_id, loss_id, dmg1 ...)
plus array with damages and consequences of shape (A, Dc)
Combine the results and grows risk_by_event with fields
(event_id, agg_id, loss_id) and (dmg_0, dmg_1, dmg_2, ...)
"""
df, dmgcsq = res
self.dmgcsq += dmgcsq
with self.monitor('saving risk_by_event', measuremem=True):
for name in df.columns:
dset = self.datastore['risk_by_event/' + name]
hdf5.extend(dset, df[name].to_numpy())
return 1
[docs] def post_execute(self, dummy):
"""
Store damages-rlzs/stats, aggrisk and aggcurves
"""
oq = self.oqparam
# no damage check, perhaps the sites where disjoint from gmf_data
if self.dmgcsq[:, :, :, 1:].sum() == 0:
haz_sids = self.datastore['gmf_data/sid'][:]
count = numpy.isin(haz_sids, self.sitecol.sids).sum()
if count == 0:
raise ValueError('The sites in gmf_data are disjoint from the '
'site collection!?')
else:
logging.warning(
'There is no damage, perhaps the hazard is too small?')
return
prc = PostRiskCalculator(oq, self.datastore.calc_id)
prc.assetcol = self.assetcol
if hasattr(self, 'exported'):
prc.exported = self.exported
with prc.datastore:
prc.run(exports='')
A, R, L, Dc = self.dmgcsq.shape
D = len(self.crmodel.damage_states)
# fix no_damage distribution for events with zero damage
number = self.assetcol['value-number']
for r in range(self.R):
ne = prc.num_events[r]
for li in range(L):
self.dmgcsq[:, r, li, 0] = ( # no damage
number * ne - self.dmgcsq[:, r, li, 1:D].sum(axis=1))
self.dmgcsq[:, r] /= ne
self.datastore['damages-rlzs'] = self.dmgcsq
set_rlzs_stats(self.datastore,
'damages-rlzs',
asset_id=self.assetcol['id'],
rlz=numpy.arange(self.R),
loss_type=oq.loss_types,
dmg_state=['no_damage'] + self.crmodel.get_dmg_csq())
if (hasattr(oq, 'infrastructure_connectivity_analysis')
and oq.infrastructure_connectivity_analysis):
logging.info('Running connectivity analysis')
conn_results = connectivity.analysis(self.datastore)
self._store_connectivity_analysis_results(conn_results)
def _store_connectivity_analysis_results(self, conn_results):
avg_dict = {}
if 'avg_connectivity_loss_eff' in conn_results:
avg_dict['efl'] = [conn_results['avg_connectivity_loss_eff']]
if 'avg_connectivity_loss_pcl' in conn_results:
avg_dict['pcl'] = [conn_results['avg_connectivity_loss_pcl']]
if 'avg_connectivity_loss_wcl' in conn_results:
avg_dict['wcl'] = [conn_results['avg_connectivity_loss_wcl']]
if 'avg_connectivity_loss_ccl' in conn_results:
avg_dict['ccl'] = [conn_results['avg_connectivity_loss_ccl']]
if avg_dict:
avg_df = pandas.DataFrame(data=avg_dict)
self.datastore.create_df(
'infra-avg_loss', avg_df,
display_name=DISPLAY_NAME['infra-avg_loss'])
logging.info(
'Stored avarage connectivity loss (infra-avg_loss)')
if 'event_connectivity_loss_eff' in conn_results:
self.datastore.create_df(
'infra-event_efl',
conn_results['event_connectivity_loss_eff'],
display_name=DISPLAY_NAME['infra-event_efl'])
logging.info(
'Stored efficiency loss by event (infra-event_efl)')
if 'event_connectivity_loss_pcl' in conn_results:
self.datastore.create_df(
'infra-event_pcl',
conn_results['event_connectivity_loss_pcl'],
display_name=DISPLAY_NAME['infra-event_pcl'])
logging.info(
'Stored partial connectivity loss by event (infra-event_pcl)')
if 'event_connectivity_loss_wcl' in conn_results:
self.datastore.create_df(
'infra-event_wcl',
conn_results['event_connectivity_loss_wcl'],
display_name=DISPLAY_NAME['infra-event_wcl'])
logging.info(
'Stored weighted connectivity loss by event (infra-event_wcl)')
if 'event_connectivity_loss_ccl' in conn_results:
self.datastore.create_df(
'infra-event_ccl',
conn_results['event_connectivity_loss_ccl'],
display_name=DISPLAY_NAME['infra-event_ccl'])
logging.info(
'Stored complete connectivity loss by event (infra-event_ccl)')
if 'taz_cl' in conn_results:
self.datastore.create_df(
'infra-taz_cl',
conn_results['taz_cl'],
display_name=DISPLAY_NAME['infra-taz_cl'])
logging.info(
'Stored connectivity loss of TAZ nodes (taz_cl)')
if 'dem_cl' in conn_results:
self.datastore.create_df(
'infra-dem_cl',
conn_results['dem_cl'],
display_name=DISPLAY_NAME['infra-dem_cl'])
logging.info(
'Stored connectivity loss of demand nodes (dem_cl)')
if 'node_el' in conn_results:
self.datastore.create_df(
'infra-node_el',
conn_results['node_el'],
display_name=DISPLAY_NAME['infra-node_el'])
logging.info(
'Stored efficiency loss of nodes (node_el)')