# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2023 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import math
import time
import os.path
import logging
import operator
import numpy
import pandas
from openquake.baselib import hdf5, parallel, python3compat
from openquake.baselib.general import (
AccumDict, humansize, groupby, block_splitter)
from openquake.hazardlib.probability_map import ProbabilityMap, get_mean_curve
from openquake.hazardlib.stats import geom_avg_std, compute_stats
from openquake.hazardlib.calc.stochastic import sample_ruptures
from openquake.hazardlib.gsim.base import ContextMaker, FarAwayRupture
from openquake.hazardlib.calc.filters import (
nofilter, getdefault, get_distances, SourceFilter)
from openquake.hazardlib.calc.gmf import GmfComputer
from openquake.hazardlib.calc.conditioned_gmfs import ConditionedGmfComputer
from openquake.hazardlib import InvalidFile
from openquake.hazardlib.calc.stochastic import get_rup_array, rupture_dt
from openquake.hazardlib.source.rupture import (
RuptureProxy, EBRupture, get_ruptures)
from openquake.commonlib import util, logs, readinput, logictree, datastore
from openquake.commonlib.calc import (
gmvs_to_poes, make_hmaps, slice_dt, build_slice_by_event, RuptureImporter,
SLICE_BY_EVENT_NSITES)
from openquake.risklib.riskinput import str2rsi, rsi2str
from openquake.calculators import base, views
from openquake.calculators.getters import get_rupture_getters, sig_eps_dt
from openquake.calculators.classical import ClassicalCalculator
from openquake.engine import engine
U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
I64 = numpy.int64
F32 = numpy.float32
F64 = numpy.float64
TWO24 = 2 ** 24
TWO32 = numpy.float64(2 ** 32)
rup_dt = numpy.dtype(
[('rup_id', I64), ('rrup', F32), ('time', F32), ('task_no', U16)])
[docs]def rup_weight(rup):
return math.ceil(rup['nsites'] / 100)
# ######################## hcurves_from_gmfs ############################ #
[docs]def build_hcurves(calc):
"""
Build the hazard curves from each realization starting from
the stored GMFs. Works only for few sites.
"""
oq = calc.oqparam
rlzs = calc.full_lt.get_realizations()
# compute and save statistics; this is done in process and can
# be very slow if there are thousands of realizations
weights = [rlz.weight['weight'] for rlz in rlzs]
# NB: in the future we may want to save to individual hazard
# curves if oq.individual_rlzs is set; for the moment we
# save the statistical curves only
hstats = oq.hazard_stats()
S = len(hstats)
R = len(weights)
N = calc.N
M = len(oq.imtls)
L1 = oq.imtls.size // M
gmf_df = calc.datastore.read_df('gmf_data', 'eid')
ev_df = calc.datastore.read_df('events', 'id')[['rlz_id']]
gmf_df = gmf_df.join(ev_df)
hc_mon = calc._monitor('building hazard curves', measuremem=False)
hcurves = {}
for (sid, rlz), df in gmf_df.groupby(['sid', 'rlz_id']):
with hc_mon:
poes = gmvs_to_poes(df, oq.imtls, oq.ses_per_logic_tree_path)
for m, imt in enumerate(oq.imtls):
hcurves[rsi2str(rlz, sid, imt)] = poes[m]
pmaps = {r: ProbabilityMap(calc.sitecol.sids, L1*M, 1).fill(0)
for r in range(R)}
for key, poes in hcurves.items():
r, sid, imt = str2rsi(key)
array = pmaps[r].array[sid, oq.imtls(imt), 0]
array[:] = 1. - (1. - array) * (1. - poes)
pmaps = [p.reshape(N, M, L1) for p in pmaps.values()]
if oq.individual_rlzs:
logging.info('Saving individual hazard curves')
calc.datastore.create_dset('hcurves-rlzs', F32, (N, R, M, L1))
calc.datastore.set_shape_descr(
'hcurves-rlzs', site_id=N, rlz_id=R,
imt=list(oq.imtls), lvl=numpy.arange(L1))
if oq.poes:
P = len(oq.poes)
M = len(oq.imtls)
ds = calc.datastore.create_dset(
'hmaps-rlzs', F32, (N, R, M, P))
calc.datastore.set_shape_descr(
'hmaps-rlzs', site_id=N, rlz_id=R,
imt=list(oq.imtls), poe=oq.poes)
for r in range(R):
calc.datastore['hcurves-rlzs'][:, r] = pmaps[r].array
if oq.poes:
[hmap] = make_hmaps([pmaps[r]], oq.imtls, oq.poes)
ds[:, r] = hmap.array
if S:
logging.info('Computing statistical hazard curves')
calc.datastore.create_dset('hcurves-stats', F32, (N, S, M, L1))
calc.datastore.set_shape_descr(
'hcurves-stats', site_id=N, stat=list(hstats),
imt=list(oq.imtls), lvl=numpy.arange(L1))
if oq.poes:
P = len(oq.poes)
M = len(oq.imtls)
ds = calc.datastore.create_dset(
'hmaps-stats', F32, (N, S, M, P))
calc.datastore.set_shape_descr(
'hmaps-stats', site_id=N, stat=list(hstats),
imt=list(oq.imtls), poes=oq.poes)
for s, stat in enumerate(hstats):
smap = ProbabilityMap(calc.sitecol.sids, L1, M)
[smap.array] = compute_stats(
numpy.array([p.array for p in pmaps]),
[hstats[stat]], weights)
calc.datastore['hcurves-stats'][:, s] = smap.array
if oq.poes:
[hmap] = make_hmaps([smap], oq.imtls, oq.poes)
ds[:, s] = hmap.array
if oq.compare_with_classical: # compute classical curves
export_dir = os.path.join(oq.export_dir, 'cl')
if not os.path.exists(export_dir):
os.makedirs(export_dir)
oq.export_dir = export_dir
oq.calculation_mode = 'classical'
with logs.init('job', vars(oq)) as log:
calc.cl = ClassicalCalculator(oq, log.calc_id)
# TODO: perhaps it is possible to avoid reprocessing the source
# model, however usually this is quite fast and do not dominate
# the computation
calc.cl.run()
engine.expose_outputs(calc.cl.datastore)
all = slice(None)
for imt in oq.imtls:
cl_mean_curves = get_mean_curve(calc.datastore, imt, all)
eb_mean_curves = get_mean_curve(calc.datastore, imt, all)
calc.rdiff, index = util.max_rel_diff_index(
cl_mean_curves, eb_mean_curves)
logging.warning(
'Relative difference with the classical '
'mean curves: %d%% at site index %d, imt=%s',
calc.rdiff * 100, index, imt)
# ######################## GMF calculator ############################ #
[docs]def count_ruptures(src):
"""
Count the number of ruptures on a heavy source
"""
return {src.source_id: src.count_ruptures()}
[docs]def get_computer(cmaker, proxy, rupgeoms, srcfilter,
station_data, station_sitecol):
"""
:returns: GmfComputer or ConditionedGmfComputer
"""
sids = srcfilter.close_sids(proxy, cmaker.trt)
if len(sids) == 0: # filtered away
raise FarAwayRupture
complete = srcfilter.sitecol.complete
proxy.geom = rupgeoms[proxy['geom_id']]
ebr = proxy.to_ebr(cmaker.trt)
oq = cmaker.oq
if station_sitecol:
stations = numpy.isin(sids, station_sitecol.sids)
assert stations.sum(), 'There are no stations??'
station_sids = sids[stations]
target_sids = sids[~stations]
return ConditionedGmfComputer(
ebr, complete.filtered(target_sids),
complete.filtered(station_sids),
station_data.loc[station_sids],
oq.observed_imts,
cmaker, oq.correl_model, oq.cross_correl,
oq.ground_motion_correlation_params,
oq.number_of_ground_motion_fields,
oq._amplifier, oq._sec_perils)
return GmfComputer(
ebr, complete.filtered(sids), cmaker,
oq.correl_model, oq.cross_correl,
oq._amplifier, oq._sec_perils)
[docs]def gen_event_based(allproxies, cmaker, stations, dstore, monitor):
"""
Launcher of event_based tasks
"""
t0 = time.time()
n = 0
for proxies in block_splitter(allproxies, 10_000, rup_weight):
n += len(proxies)
yield event_based(proxies, cmaker, stations, dstore, monitor)
rem = allproxies[n:] # remaining ruptures
dt = time.time() - t0
if dt > cmaker.oq.time_per_task and sum(
rup_weight(r) for r in rem) > 12_000:
half = len(rem) // 2
yield gen_event_based, rem[:half], cmaker, stations, dstore
yield gen_event_based, rem[half:], cmaker, stations, dstore
return
[docs]def event_based(proxies, cmaker, stations, dstore, monitor):
"""
Compute GMFs and optionally hazard curves
"""
oq = cmaker.oq
alldata = []
se_dt = sig_eps_dt(oq.imtls)
sig_eps = []
times = [] # rup_id, nsites, dt
fmon = monitor('instantiating GmfComputer', measuremem=False)
mmon = monitor('computing mean_stds', measuremem=False)
cmon = monitor('computing gmfs', measuremem=False)
umon = monitor('updating gmfs', measuremem=False)
rmon = monitor('reading mea,tau,phi', measuremem=False)
max_iml = oq.get_max_iml()
cmaker.scenario = 'scenario' in oq.calculation_mode
with dstore:
if dstore.parent:
sitecol = dstore['sitecol']
if 'complete' in dstore.parent:
sitecol.complete = dstore.parent['complete']
else:
sitecol = dstore['sitecol']
if 'complete' in dstore:
sitecol.complete = dstore['complete']
maxdist = oq.maximum_distance(cmaker.trt)
srcfilter = SourceFilter(sitecol.complete, maxdist)
rupgeoms = dstore['rupgeoms']
for proxy in proxies:
t0 = time.time()
with fmon:
if proxy['mag'] < cmaker.min_mag:
continue
try:
computer = get_computer(
cmaker, proxy, rupgeoms, srcfilter, *stations)
except FarAwayRupture:
# skip this rupture
continue
if hasattr(computer, 'station_data'): # conditioned GMFs
assert cmaker.scenario
df = computer.compute_all(dstore, rmon, cmon, umon)
else: # regular GMFs
with mmon:
mean_stds = cmaker.get_mean_stds(
[computer.ctx], split_by_mag=False)
# avoid numba type error
computer.ctx.flags.writeable = True
df = computer.compute_all(mean_stds, max_iml, cmon, umon)
sig_eps.append(computer.build_sig_eps(se_dt))
dt = time.time() - t0
times.append((proxy['id'], computer.ctx.rrup.min(), dt))
alldata.append(df)
if sum(len(df) for df in alldata):
gmfdata = pandas.concat(alldata)
else:
gmfdata = {}
times = numpy.array([tup + (monitor.task_no,) for tup in times], rup_dt)
times.sort(order='rup_id')
if not oq.ground_motion_fields:
gmfdata = {}
if len(gmfdata) == 0:
return dict(gmfdata={}, times=times, sig_eps=())
return dict(gmfdata={k: gmfdata[k].to_numpy() for k in gmfdata.columns},
times=times, sig_eps=numpy.concatenate(sig_eps, dtype=se_dt))
[docs]def filter_stations(station_df, complete, rup, maxdist):
"""
:param station_df: DataFrame with the stations
:param complete: complete SiteCollection
:param rup: rupture
:param maxdist: maximum distance
:returns: filtered (station_df, station_sitecol)
"""
ns = len(station_df)
ok = (get_distances(rup, complete, 'rrup') <= maxdist) & numpy.isin(
complete.sids, station_df.index)
station_sites = complete.filter(ok)
station_data = station_df[numpy.isin(station_df.index, station_sites.sids)]
if len(station_data) < ns:
logging.info('Discarded %d/%d stations more distant than %d km',
ns - len(station_data), ns, maxdist)
return station_data, station_sites
# NB: save_tmp is passed in event_based_risk
[docs]def starmap_from_rups(func, oq, full_lt, sitecol, dstore, save_tmp=None):
"""
Submit the ruptures and apply `func` (event_based or ebrisk)
"""
set_mags(oq, dstore)
rups = dstore['ruptures'][:]
logging.info('Reading {:_d} ruptures'.format(len(rups)))
logging.info('Affected sites = %.1f per rupture', rups['nsites'].mean())
allproxies = [RuptureProxy(rec) for rec in rups]
if "station_data" in oq.inputs:
rupgeoms = dstore['rupgeoms'][:]
trt = full_lt.trts[0]
proxy = allproxies[0]
proxy.geom = rupgeoms[proxy['geom_id']]
rup = proxy.to_ebr(trt).rupture
station_df = dstore.read_df('station_data', 'site_id')
maxdist = (oq.maximum_distance_stations or
oq.maximum_distance['default'][-1][1])
station_data, station_sites = filter_stations(
station_df, sitecol.complete, rup, maxdist)
else:
station_data, station_sites = None, None
gb = groupby(allproxies, operator.itemgetter('trt_smr'))
totw = sum(rup_weight(p) for p in allproxies) / (
oq.concurrent_tasks or 1)
logging.info('totw = {:_d}'.format(round(totw)))
if "station_data" in oq.inputs:
rlzs_by_gsim = full_lt.get_rlzs_by_gsim(0)
cmaker = ContextMaker(trt, rlzs_by_gsim, oq)
cmaker.scenario = True
maxdist = oq.maximum_distance(cmaker.trt)
srcfilter = SourceFilter(sitecol.complete, maxdist)
computer = get_computer(
cmaker, proxy, rupgeoms, srcfilter,
station_data, station_sites)
mean_covs = computer.get_mean_covs()
for key, val in zip(['mea', 'sig', 'tau', 'phi'], mean_covs):
for g in range(len(cmaker.gsims)):
name = 'conditioned/gsim_%d/%s' % (g, key)
dstore.create_dset(name, val[g])
del proxy.geom # to reduce data transfer
dstore.swmr_on()
smap = parallel.Starmap(func, h5=dstore.hdf5)
if save_tmp:
save_tmp(smap.monitor)
for trt_smr, proxies in gb.items():
trt = full_lt.trts[trt_smr // TWO24]
extra = sitecol.array.dtype.names
rlzs_by_gsim = full_lt.get_rlzs_by_gsim(trt_smr)
cmaker = ContextMaker(trt, rlzs_by_gsim, oq, extraparams=extra)
cmaker.min_mag = getdefault(oq.minimum_magnitude, trt)
for block in block_splitter(proxies, totw, rup_weight):
args = block, cmaker, (station_data, station_sites), dstore
smap.submit(args)
return smap
[docs]def set_mags(oq, dstore):
"""
Set the attribute oq.mags_by_trt
"""
if 'source_mags' in dstore:
oq.mags_by_trt = {
trt: python3compat.decode(dset[:])
for trt, dset in dstore['source_mags'].items()}
[docs]def compute_avg_gmf(gmf_df, weights, min_iml):
"""
:param gmf_df: a DataFrame with colums eid, sid, rlz, gmv...
:param weights: E weights associated to the realizations
:param min_iml: array of M minimum intensities
:returns: a dictionary site_id -> array of shape (2, M)
"""
dic = {}
E = len(weights)
M = len(min_iml)
for sid, df in gmf_df.groupby(gmf_df.index):
eid = df.pop('eid')
gmvs = numpy.ones((E, M), F32) * min_iml
gmvs[eid.to_numpy()] = df.to_numpy()
dic[sid] = geom_avg_std(gmvs, weights)
return dic
[docs]@base.calculators.add('event_based', 'scenario', 'ucerf_hazard')
class EventBasedCalculator(base.HazardCalculator):
"""
Event based PSHA calculator generating the ground motion fields and
the hazard curves from the ruptures, depending on the configuration
parameters.
"""
core_task = event_based
is_stochastic = True
accept_precalc = ['event_based', 'ebrisk', 'event_based_risk']
[docs] def init(self):
if self.oqparam.cross_correl.__class__.__name__ == 'GodaAtkinson2009':
logging.warning(
'The truncation_level param is ignored with GodaAtkinson2009')
if hasattr(self, 'csm'):
self.check_floating_spinning()
if hasattr(self.oqparam, 'maximum_distance'):
self.srcfilter = self.src_filter()
else:
self.srcfilter = nofilter
if not self.datastore.parent:
self.datastore.create_dset('ruptures', rupture_dt)
self.datastore.create_dset('rupgeoms', hdf5.vfloat32)
[docs] def build_events_from_sources(self):
"""
Prefilter the composite source model and store the source_info
"""
oq = self.oqparam
sources = self.csm.get_sources()
logging.info('Counting the ruptures in the CompositeSourceModel')
self.datastore.swmr_on()
with self.monitor('counting ruptures', measuremem=True):
nrups = parallel.Starmap( # weighting the heavy sources
count_ruptures, [(src,) for src in sources
if src.code in b'AMSC'],
h5=self.datastore.hdf5,
progress=logging.debug).reduce()
# NB: multifault sources must be considered light to avoid a large
# data transfer, even if .count_ruptures can be slow
for src in sources:
try:
src.num_ruptures = nrups[src.source_id]
except KeyError: # light sources
src.num_ruptures = src.count_ruptures()
src.weight = src.num_ruptures
self.csm.fix_src_offset() # NB: must be AFTER count_ruptures
maxweight = sum(sg.weight for sg in self.csm.src_groups) / (
self.oqparam.concurrent_tasks or 1)
eff_ruptures = AccumDict(accum=0) # grp_id => potential ruptures
source_data = AccumDict(accum=[])
allargs = []
srcfilter = self.srcfilter
logging.info('Building ruptures')
for sg in self.csm.src_groups:
if not sg.sources:
continue
rgb = self.full_lt.get_rlzs_by_gsim(sg.sources[0].trt_smr)
cmaker = ContextMaker(sg.trt, rgb, oq)
for src_group in sg.split(maxweight):
allargs.append((src_group, cmaker, srcfilter.sitecol))
self.datastore.swmr_on()
smap = parallel.Starmap(
sample_ruptures, allargs, h5=self.datastore.hdf5)
mon = self.monitor('saving ruptures')
self.nruptures = 0 # estimated classical ruptures within maxdist
for dic in smap:
# NB: dic should be a dictionary, but when the calculation dies
# for an OOM it can become None, thus giving a very confusing error
if dic is None:
raise MemoryError('You ran out of memory!')
rup_array = dic['rup_array']
if len(rup_array) == 0:
continue
if dic['source_data']:
source_data += dic['source_data']
if dic['eff_ruptures']:
eff_ruptures += dic['eff_ruptures']
with mon:
self.nruptures += len(rup_array)
# NB: the ruptures will we reordered and resaved later
hdf5.extend(self.datastore['ruptures'], rup_array)
hdf5.extend(self.datastore['rupgeoms'], rup_array.geom)
if len(self.datastore['ruptures']) == 0:
raise RuntimeError('No ruptures were generated, perhaps the '
'effective investigation time is too short')
# don't change the order of the 3 things below!
self.store_source_info(source_data)
self.store_rlz_info(eff_ruptures)
imp = RuptureImporter(self.datastore)
with self.monitor('saving ruptures and events'):
imp.import_rups_events(
self.datastore.getitem('ruptures')[()], get_rupture_getters)
[docs] def agg_dicts(self, acc, result):
"""
:param acc: accumulator dictionary
:param result: an AccumDict with events, ruptures and gmfs
"""
if result is None: # instead of a dict
raise MemoryError('You ran out of memory!')
sav_mon = self.monitor('saving gmfs')
primary = self.oqparam.get_primary_imtls()
sec_imts = self.oqparam.get_sec_imts()
with sav_mon:
gmfdata = result.pop('gmfdata')
if len(gmfdata):
df = pandas.DataFrame(gmfdata)
dset = self.datastore['gmf_data/sid']
times = result.pop('times')
hdf5.extend(self.datastore['gmf_data/rup_info'], times)
if self.N >= SLICE_BY_EVENT_NSITES:
sbe = build_slice_by_event(
df.eid.to_numpy(), self.offset)
hdf5.extend(self.datastore['gmf_data/slice_by_event'], sbe)
hdf5.extend(dset, df.sid.to_numpy())
hdf5.extend(self.datastore['gmf_data/eid'], df.eid.to_numpy())
for m in range(len(primary)):
hdf5.extend(self.datastore[f'gmf_data/gmv_{m}'],
df[f'gmv_{m}'])
for sec_imt in sec_imts:
hdf5.extend(self.datastore[f'gmf_data/{sec_imt}'],
df[sec_imt])
sig_eps = result.pop('sig_eps')
hdf5.extend(self.datastore['gmf_data/sigma_epsilon'], sig_eps)
self.offset += len(df)
return acc
def _read_scenario_ruptures(self):
oq = self.oqparam
gsim_lt = readinput.get_gsim_lt(self.oqparam)
G = gsim_lt.get_num_paths()
if oq.calculation_mode.startswith('scenario'):
ngmfs = oq.number_of_ground_motion_fields
if oq.inputs['rupture_model'].endswith('.xml'):
# check the number of branchsets
bsets = len(gsim_lt._ltnode)
if bsets > 1:
raise InvalidFile(
'%s for a scenario calculation must contain a single '
'branchset, found %d!' % (oq.inputs['job_ini'], bsets))
[(trt, rlzs_by_gsim)] = gsim_lt.get_rlzs_by_gsim_trt().items()
rup = readinput.get_rupture(oq)
oq.mags_by_trt = {trt: ['%.2f' % rup.mag]}
self.cmaker = ContextMaker(trt, rlzs_by_gsim, oq)
if self.N > oq.max_sites_disagg: # many sites, split rupture
ebrs = []
for i in range(ngmfs):
ebr = EBRupture(rup, 0, 0, G, i, e0=i * G)
ebr.seed = oq.ses_seed + i
ebrs.append(ebr)
else: # keep a single rupture with a big occupation number
ebrs = [EBRupture(rup, 0, 0, G * ngmfs, 0)]
ebrs[0].seed = oq.ses_seed
srcfilter = SourceFilter(self.sitecol, oq.maximum_distance(trt))
aw = get_rup_array(ebrs, srcfilter)
if len(aw) == 0:
raise RuntimeError(
'The rupture is too far from the sites! Please check the '
'maximum_distance and the position of the rupture')
elif oq.inputs['rupture_model'].endswith('.csv'):
aw = get_ruptures(oq.inputs['rupture_model'])
if len(gsim_lt.values) == 1: # fix for scenario_damage/case_12
aw['trt_smr'] = 0 # a single TRT
if oq.calculation_mode.startswith('scenario'):
# rescale n_occ by ngmfs and nrlzs
aw['n_occ'] *= ngmfs * gsim_lt.get_num_paths()
else:
raise InvalidFile("Something wrong in %s" % oq.inputs['job_ini'])
rup_array = aw.array
hdf5.extend(self.datastore['rupgeoms'], aw.geom)
if len(rup_array) == 0:
raise RuntimeError(
'There are no sites within the maximum_distance'
' of %s km from the rupture' % oq.maximum_distance(
rup.tectonic_region_type)(rup.mag))
fake = logictree.FullLogicTree.fake(gsim_lt)
self.realizations = fake.get_realizations()
self.datastore['full_lt'] = fake
self.store_rlz_info({}) # store weights
self.save_params()
imp = RuptureImporter(self.datastore)
imp.import_rups_events(rup_array, get_rupture_getters)
[docs] def execute(self):
oq = self.oqparam
dstore = self.datastore
if oq.ground_motion_fields and oq.min_iml.sum() == 0:
logging.warning('The GMFs are not filtered: '
'you may want to set a minimum_intensity')
elif oq.minimum_intensity:
logging.info('minimum_intensity=%s', oq.minimum_intensity)
else:
logging.info('min_iml=%s', oq.min_iml)
self.offset = 0
if oq.hazard_calculation_id: # from ruptures
dstore.parent = datastore.read(oq.hazard_calculation_id)
self.full_lt = dstore.parent['full_lt']
set_mags(oq, dstore)
elif hasattr(self, 'csm'): # from sources
set_mags(oq, dstore)
self.build_events_from_sources()
if (oq.ground_motion_fields is False and
oq.hazard_curves_from_gmfs is False):
return {}
elif 'rupture_model' not in oq.inputs:
logging.warning(
'There is no rupture_model, the calculator will just '
'import data without performing any calculation')
fake = logictree.FullLogicTree.fake()
dstore['full_lt'] = fake # needed to expose the outputs
dstore['weights'] = [1.]
return {}
else: # scenario
self._read_scenario_ruptures()
if (oq.ground_motion_fields is False and
oq.hazard_curves_from_gmfs is False):
return {}
if oq.ground_motion_fields:
imts = oq.get_primary_imtls()
base.create_gmf_data(dstore, imts, oq.get_sec_imts())
dstore.create_dset('gmf_data/sigma_epsilon', sig_eps_dt(oq.imtls))
dstore.create_dset('gmf_data/rup_info', rup_dt)
if self.N >= SLICE_BY_EVENT_NSITES:
dstore.create_dset('gmf_data/slice_by_event', slice_dt)
# event_based in parallel
eb = (event_based if parallel.oq_distribute() == 'slurm'
else gen_event_based)
smap = starmap_from_rups(eb, oq, self.full_lt, self.sitecol, dstore)
acc = smap.reduce(self.agg_dicts)
if 'gmf_data' not in dstore:
return acc
if oq.ground_motion_fields:
with self.monitor('saving avg_gmf', measuremem=True):
self.save_avg_gmf()
return acc
[docs] def save_avg_gmf(self):
"""
Compute and save avg_gmf, unless there are too many GMFs
"""
size = self.datastore.getsize('gmf_data')
maxsize = self.oqparam.gmf_max_gb * 1024 ** 3
logging.info(f'Stored {humansize(size)} of GMFs')
if size > maxsize:
logging.warning(
f'There are more than {humansize(maxsize)} of GMFs,'
' not computing avg_gmf')
return
rlzs = self.datastore['events']['rlz_id']
self.weights = self.datastore['weights'][:][rlzs]
gmf_df = self.datastore.read_df('gmf_data', 'sid')
for sec_imt in self.oqparam.get_sec_imts(): # ignore secondary perils
del gmf_df[sec_imt]
rel_events = gmf_df.eid.unique()
e = len(rel_events)
if e == 0:
raise RuntimeError(
'No GMFs were generated, perhaps they were '
'all below the minimum_intensity threshold')
elif e < len(self.datastore['events']):
self.datastore['relevant_events'] = rel_events
logging.info('Stored {:_d} relevant event IDs'.format(e))
# really compute and store the avg_gmf
M = len(self.oqparam.min_iml)
avg_gmf = numpy.zeros((2, len(self.sitecol.complete), M), F32)
for sid, avgstd in compute_avg_gmf(
gmf_df, self.weights, self.oqparam.min_iml).items():
avg_gmf[:, sid] = avgstd
self.datastore['avg_gmf'] = avg_gmf
[docs] def post_execute(self, dummy):
oq = self.oqparam
if not oq.ground_motion_fields or 'gmf_data' not in self.datastore:
return
# check seed dependency unless the number of GMFs is huge
size = self.datastore.getsize('gmf_data/gmv_0')
if 'gmf_data' in self.datastore and size < 4E9:
logging.info('Checking stored GMFs')
msg = views.view('extreme_gmvs', self.datastore)
logging.warning(msg)
if self.datastore.parent:
self.datastore.parent.open('r')
if oq.hazard_curves_from_gmfs:
if size > 4E6:
msg = 'gmf_data has {:_d} rows'.format(size)
raise RuntimeError(f'{msg}: too big to compute the hcurves')
build_hcurves(self)