# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`GulerceEtAl2017`
               :class:`GulerceEtAl2017RegTWN`
               :class:`GulerceEtAl2017RegITA`
               :class:`GulerceEtAl2017RegMID`
               :class:`GulerceEtAl2017RegCHN`
               :class:`GulerceEtAl2017RegJPN`
"""
import numpy as np
from openquake.hazardlib import const
from openquake.hazardlib.gsim.base import CoeffsTable, GMPE
from openquake.hazardlib.imt import SA
[docs]class GulerceEtAl2017(GMPE):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    This model follows the same functional form as in ASK14 by Abrahamson et
    al. (2014) with minor modifications to the underlying parameters.
    Note that this is a more updated version than the GMPE described in the
    original PEER Report 2013/24.
    **Reference:**
    Gulerce, Z., Kamai, R., Abrahamson, N., & Silva, W. (2017). Ground Motion
    Prediction Equations for the Vertical Ground Motion Component Based on the
    NGA-W2 Database. *Earthquake Spectra*, *33*(2), 499-528.
    """
    #: Supported tectonic region type is active shallow crust, as part of the
    #: NGA-West2 Database; re-defined here for clarity.
    DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST
    #: Supported intensity measure type is spectral acceleration
    #: at T=0.01 to 10.0 s; see Tables 1a and 1b.
    DEFINED_FOR_INTENSITY_MEASURE_TYPES = {SA}
    #: Supported intensity measure component is the
    #: :attr:`~openquake.hazardlib.const.IMC.Vertical` direction component;
    #: see title.
    DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.VERTICAL
    #: Supported standard deviation types are inter-event, intra-event
    #: and total; see the section for "Equations for Standard Deviation".
    DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([
        const.StdDev.TOTAL,
        const.StdDev.INTER_EVENT,
        const.StdDev.INTRA_EVENT
    ])
    #: Required site parameter is Vs30 only. Unlike in ASK14, the nonlinear
    #: site response and Z1.0 scaling is not incorporated; see the section
    #: for "Site Amplification Effects".
    REQUIRES_SITES_PARAMETERS = {'vs30'}
    #: Required rupture parameters are magnitude, rake, dip, ztor, and width;
    #: see the section for "Functional Form of the Model".
    REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake', 'dip', 'ztor', 'width'}
    #: Required distance measures are Rrup, Rjb, Ry0 and Rx;
    #: see the section for "Functional Form of the Model".
    REQUIRES_DISTANCES = {'rrup', 'rjb', 'rx', 'ry0'}
[docs]    def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types):
        """
        See :meth:`superclass method
        for spec of input and result values.
        <.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
        """
        # get the necessary set of coefficients
        C = self.COEFFS[imt]
        # get the mean value
        mean = (self._get_basic_term(C, rup, dists) +
                self._get_faulting_style_term(C, rup) +
                self._get_site_response_term(C, imt, sites.vs30) +
                self._get_hanging_wall_term(C, dists, rup) +
                self._get_top_of_rupture_depth_term(C, imt, rup)
                )
        mean += self._get_regional_term(C, imt, sites.vs30, dists.rrup)
        # get standard deviations
        stddevs = self._get_stddevs(C, imt, rup, sites, stddev_types, dists)
        return mean, stddevs 
    def _get_basic_term(self, C, rup, dists):
        """
        Compute and return basic form, see Equation 11 to 13.
        """
        # Fictitious depth calculation, Equation 13. Unlike ASK14, the break in
        # the c4m function is shifted to M6.0.
        # The equation for c4m for M4.0-6.0 is different from GKAS16 EQS paper,
        # but used the supplementary material instead after code verification.
        if rup.mag > 6.:
            c4m = C['c4']
        elif rup.mag > 4.:
            c4m = C['c4'] - ((C['c4'] - 1.) * (6. - rup.mag) / (6. - 4.))
        else:
            c4m = 1.
        # Equation 12
        R = np.sqrt(dists.rrup**2. + c4m**2.)
        # basic form, Equation 11
        base_term = C['a1'] * np.ones_like(dists.rrup) + C['a17'] * dists.rrup
        if rup.mag >= self.CONSTS['m1']:
            base_term += (C['a5'] * (rup.mag - self.CONSTS['m1']) +
                          C['a8'] * (8.5 - rup.mag)**2. +
                          (C['a2'] + C['a3'] * (rup.mag - self.CONSTS['m1'])) *
                          np.log(R))
        elif rup.mag >= self.CONSTS['m2']:
            base_term += (C['a4'] * (rup.mag - self.CONSTS['m1']) +
                          C['a8'] * (8.5 - rup.mag)**2. +
                          (C['a2'] + C['a3'] * (rup.mag - self.CONSTS['m1'])) *
                          np.log(R))
        else:
            base_term += (C['a4'] * (self.CONSTS['m2'] - self.CONSTS['m1']) +
                          C['a8'] * (8.5 - self.CONSTS['m2'])**2. +
                          C['a6'] * (rup.mag - self.CONSTS['m2']) +
                          (C['a2'] + C['a3'] * (self.CONSTS['m2'] -
                          self.CONSTS['m1'])) * np.log(R))
        return base_term
    def _get_faulting_style_term(self, C, rup):
        """
        Compute and return faulting style term, that is the sum of the second
        and third terms in Equation 1.
        """
        # this implements Equations 3 and 4;
        # f7 is the term for reverse fault mechanisms;
        # f8 is the term for normal fault mechanisms.
        if rup.mag > 5.:
            f7 = C['a11']
            f8 = C['a12']
        elif rup.mag >= 4.:
            f7 = C['a11'] * (rup.mag - 4.)
            f8 = C['a12'] * (rup.mag - 4.)
        else:
            f7 = 0.0
            f8 = 0.0
        # ranges of rake values for each faulting mechanism are same with ASK14
        return (f7 * float(rup.rake > 30 and rup.rake < 150) +
                f8 * float(rup.rake > -150 and rup.rake < -30))
    def _get_vs30star(self, vs30, imt):
        """
        This computes and returns the tapered Vs30, in Equations 15 and 16.
        """
        # compute the limiting v1 value, see Equation 16.
        t = imt.period
        if t <= 0.50:
            v1 = 1500.0
        elif t < 3.0:
            # changed to -0.351 for additional significant figures
            v1 = np.exp(-0.351 * np.log(t / 0.5) + np.log(1500.))
        else:
            v1 = 800.0
        # set the vs30 star value, see Equation 15.
        vs30_star = np.ones_like(vs30) * vs30
        vs30_star[vs30 >= v1] = v1
        return vs30_star
    def _get_site_response_term(self, C, imt, vs30):
        """
        Compute and return site response model term; see section
        "Site Amplification Effects".
        """
        # vs30 star, Equation 15
        vs30_star = self._get_vs30star(vs30, imt)
        # compute the site term
        site_resp_term = np.zeros_like(vs30)
        # Unlike ASK14, the site term here is independent of nonlinear response
        # parameters b, c, and n.
        vs30_rat = vs30_star / C['vlin']
        site_resp_term = C['a10'] * np.log(vs30_rat)
        return site_resp_term
    def _get_hanging_wall_term(self, C, dists, rup):
        """
        Compute and return hanging wall model term, see section on
        "Hanging Wall Effects".
        """
        if rup.dip == 90.0:
            return np.zeros_like(dists.rx)
        else:
            Fhw = np.zeros_like(dists.rx)
            Fhw[dists.rx > 0] = 1.
            # Compute dip taper t1, Equation 6
            T1 = np.ones_like(dists.rx)
            T1 *= 60./45. if rup.dip <= 30. else (90.-rup.dip)/45.0
            # Compute magnitude taper t2, Equation 7, with a2hw set to 0.2.
            T2 = np.zeros_like(dists.rx)
            a2hw = 0.2
            if rup.mag >= 6.5:
                T2 += (1. + a2hw * (rup.mag - 6.5))
            elif rup.mag > 5.5:
                T2 += (1. + a2hw * (rup.mag - 6.5) - (1. - a2hw) *
                       (rup.mag - 6.5)**2)
            else:
                T2 *= 0.
            # Compute distance taper t3, Equation 8
            T3 = np.zeros_like(dists.rx)
            r1 = rup.width * np.cos(np.radians(rup.dip))
            # The r2 term is different here from ASK14 where r2 = 3*r1.
            r2 = 4. * r1
            #
            idx = dists.rx < r1
            T3[idx] = (np.ones_like(dists.rx)[idx] * self.CONSTS['h1'] +
                       self.CONSTS['h2'] * (dists.rx[idx] / r1) +
                       self.CONSTS['h3'] * (dists.rx[idx] / r1)**2)
            #
            idx = ((dists.rx >= r1) & (dists.rx <= r2))
            T3[idx] = 1. - (dists.rx[idx] - r1) / (r2 - r1)
            # Compute depth taper t4, Equation 9
            T4 = np.zeros_like(dists.rx)
            #
            if rup.ztor <= 10.:
                T4 += (1. - rup.ztor**2. / 100.)
            # Compute off-edge distance taper T5, Equation 10
            # ry1 computed same as in ASK14
            T5 = np.zeros_like(dists.rx)
            ry1 = dists.rx * np.tan(np.radians(20.))
            #
            idx = (dists.ry0 - ry1) <= 0.0
            T5[idx] = 1.
            #
            idx = (((dists.ry0 - ry1) > 0.0) & ((dists.ry0 - ry1) < 5.0))
            T5[idx] = 1. - (dists.ry0[idx] - ry1[idx]) / 5.0
            # Finally, compute the hanging wall term, Equation 5
            return Fhw*C['a13']*T1*T2*T3*T4*T5
    def _get_top_of_rupture_depth_term(self, C, imt, rup):
        """
        Compute and return top-of-rupture depth term, see section
        "Deph Scaling Effects".
        """
        if rup.ztor >= 20.0:
            return C['a15']
        else:
            return C['a15'] * rup.ztor / 20.0
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        As with ASK14, we assume California as the default region,
        hence here the regional term is assumed = 0.
        """
        return 0.
    def _get_stddevs(self, C, imt, rup, sites, stddev_types, dists):
        """
        Return standard deviations as described in section "Equations for
        Standard Deviation".
        """
        std_intra = self._get_intra_event_std(C, rup.mag)
        std_inter = self._get_inter_event_std(C, rup.mag)
        stddevs = []
        for stddev_type in stddev_types:
            assert stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES
            if stddev_type == const.StdDev.TOTAL:
                stddevs.append(np.sqrt(std_intra ** 2 +
                                       std_inter ** 2))
            elif stddev_type == const.StdDev.INTRA_EVENT:
                stddevs.append(std_intra)
            elif stddev_type == const.StdDev.INTER_EVENT:
                stddevs.append(std_inter)
        return stddevs
    def _get_intra_event_std(self, C, mag):
        """
        Returns intra-event std dev, Phi, Equation 19.
        """
        # Intra-event standard deviation model is simplified since the effect
        # of nonlinearity of the rock motion is not incorporated
        # (Equations 27-30 in ASK14 are not used).
        phi = self._get_phi_regional(C, mag)
        return phi
    def _get_phi_regional(self, C, mag):
        """
        Returns regional (default) intra-event standard deviation
        """
        if mag < 4:
            phi_reg = C['s1']
        elif mag <= 6:
            phi_reg = C['s1'] + (C['s2_noJP'] - C['s1']) / 2. * (mag - 4.)
        else:
            phi_reg = C['s2_noJP']
        return phi_reg
    def _get_inter_event_std(self, C, mag):
        """
        Returns inter-event standard deviation, Tau, Equation 20
        """
        tau = self._get_tau_regional(C, mag)
        return tau
    def _get_tau_regional(self, C, mag):
        """
        Returns regional (default) inter-event standard deviation
        """
        if mag < 5:
            tau_reg = C['s3']
        elif mag <= 7:
            tau_reg = C['s3'] + (C['s4_noJP'] - C['s3']) / 2. * (mag - 5.)
        else:
            tau_reg = C['s4_noJP']
        return tau_reg
    #: Coefficients obtained from Tables 1a, 1b, 2, and 3 in
    #: Gulerce et al. (2017). This coefficient table is also provided in a free
    #: supplementary material distributed by the authors.
    COEFFS = CoeffsTable(sa_damping=5, table="""\
IMT      vlin    c       c4      a1         a2        a3       a4       a5        a6       a8      a10        a11       a12      a13      a14       a15       a17        a25        a26        a27       a28       a29        a31       a35       s1        s2_all    s3        s4_all    s2_noJP    s4_noJP
0.01     660     2.4     8.6     1.3504     -1.087    0.275    0.121    -0.592    1.78     0       -0.397     -0.2      -0.12    0.67     -0.168    1.1       -0.0062    0.0015     -0.0007    0.0031    0.0035    -0.001     0.252     0.38      0.734     0.52      0.4402    0.3501    0.45       0.3219
0.02     680     2.4     8.6     1.4832     -1.106    0.275    0.111    -0.592    1.78     0       -0.36      -0.2      -0.12    0.67     -0.165    1.1       -0.0064    0.0017     -0.0007    0.0031    0.0035    -0.0009    0.215     0.343     0.734     0.5396    0.4546    0.3586    0.473      0.3328
0.03     770     2.4     8.6     1.7798     -1.15     0.275    0.105    -0.592    1.759    0       -0.34      -0.2      -0.12    0.67     -0.18     1.1       -0.0069    0.0016     -0.0008    0.0032    0.0037    -0.001     0.195     0.323     0.734     0.551     0.4958    0.3904    0.4865     0.3613
0.05     915     2.4     8.6     1.9652     -1.108    0.26     0.148    -0.559    1.708    0       -0.405     -0.2      -0.12    0.67     -0.212    1.1       -0.0092    0.0013     -0.0011    0.003     0.0047    -0.0006    0.26      0.388     0.734     0.5654    0.5365    0.4604    0.5035     0.4108
0.075    960     2.4     8.6     1.7821     -1.006    0.247    0.202    -0.531    1.689    0       -0.46      -0.2      -0.12    0.67     -0.112    1.1       -0.0102    -0.0009    -0.0021    0.003     0.0054    -0.0009    0.315     0.443     0.734     0.5769    0.5078    0.468     0.504      0.3945
0.1      910     2.4     8.6     1.6862     -0.952    0.239    0.258    -0.514    1.742    0       -0.474     -0.2      -0.12    0.67     -0.09     1.1       -0.0097    -0.0014    -0.0035    0.0026    0.0051    -0.0014    0.329     0.457     0.734     0.585     0.4714    0.4165    0.504      0.3621
0.15     740     2.4     8.6     1.6087     -0.94     0.227    0.309    -0.488    1.831    0       -0.474     -0.159    -0.12    0.67     -0.075    1.1       -0.0075    -0.0014    -0.0045    0.002     0.0041    -0.0024    0.329     0.457     0.734     0.585     0.4189    0.3713    0.504      0.3283
0.2      590     2.4     8.6     1.4836     -0.928    0.218    0.346    -0.469    1.937    0       -0.474     -0.129    -0.12    0.67     -0.075    1.1       -0.006     -0.0012    -0.0045    0.002     0.0038    -0.0029    0.329     0.457     0.7098    0.585     0.3955    0.3389    0.504      0.3058
0.25     495     2.4     8.6     1.3777     -0.928    0.211    0.374    -0.454    2.032    0       -0.474     -0.106    -0.12    0.62     -0.075    1.1       -0.0045    -0.0015    -0.0047    0.0015    0.0029    -0.0037    0.329     0.457     0.6909    0.585     0.3819    0.3138    0.504      0.2884
0.3      430     1.8     8.6     1.3091     -0.928    0.206    0.397    -0.443    2.109    0       -0.474     -0.088    -0.12    0.579    -0.075    1.031     -0.0036    -0.0015    -0.0044    0.0013    0.0025    -0.004     0.329     0.457     0.6756    0.585     0.3835    0.2932    0.504      0.2741
0.4      360     1.8     8.6     1.1237     -0.928    0.197    0.434    -0.352    2.227    0       -0.474     -0.059    -0.12    0.515    -0.075    0.922     -0.0024    -0.0015    -0.0034    0.0011    0.0016    -0.0041    0.329     0.457     0.6513    0.585     0.4       0.2608    0.504      0.2516
0.5      340     1.8     8.6     0.961      -0.928    0.19     0.462    -0.281    2.351    0       -0.49      -0.036    -0.12    0.465    -0.075    0.837     -0.0017    -0.0012    -0.0025    0.0007    0.0011    -0.0041    0.345     0.473     0.6325    0.585     0.4277    0.2357    0.5249     0.2342
0.75     330     1.8     8.6     0.6477     -0.928    0.178    0.513    -0.152    2.577    0       -0.575     0.006     -0.12    0.374    -0.06     0.683     -0.001     -0.0002    -0.0006    0         0.0004    -0.0038    0.43      0.558     0.5983    0.611     0.4686    0.19      0.563      0.2025
1        330     1.8     8.6     0.4024     -0.928    0.169    0.6      -0.061    2.7      0       -0.626     0.035     -0.12    0.31     0.017     0.574     -0.001     0          0          0         0.0004    -0.0031    0.481     0.609     0.5741    0.6295    0.5       0.19      0.59       0.18
1.5      330     1.8     8.6     0.0656     -0.928    0.157    0.838    0.068     2.821    0       -0.721     0.076     -0.12    0.219    0.147     0.42      -0.001     0          0          0         0.0004    -0.0023    0.576     0.704     0.5399    0.6555    0.5337    0.19      0.628      0.184
2        330     1.8     8.6     -0.2475    -0.928    0.148    1.006    0.159     2.869    0       -0.73      0.106     -0.12    0.155    0.246     0.311     -0.001     0          0          0         0.0004    -0.0018    0.585     0.713     0.5157    0.674     0.5337    0.19      0.655      0.184
3        330     1.8     8.6     -0.7131    -0.928    0.136    1.244    0.288     2.92     0       -0.649     0.147     -0.12    0.064    0.385     0.157     -0.001     0          0          0         0.0004    -0.0018    0.504     0.632     0.4815    0.7       0.5337    0.19      0.693      0.184
4        330     1.8     8.6     -1.0571    -0.928    0.128    1.413    0.494     2.95     0       -0.575     0.176     -0.12    0        0.484     0.048     -0.001     0          0          0         0.0004    -0.0018    0.43      0.558     0.4572    0.7       0.5337    0.19      0.72       0.184
5        330     1.8     8.6     -1.7084    -0.848    0.121    1.544    0.654     2.95     0       -0.5       0.199     -0.12    0        0.561     -0.037    -0.001     0          0          0         0.0004    -0.0018    0.355     0.483     0.4384    0.7       0.5337    0.19      0.72       0.184
6        330     1.8     8.6     -2.2393    -0.783    0.115    1.651    0.784     2.95     0       -0.427     0.218     -0.12    0        0.624     -0.106    -0.001     0          0          0         0.0004    -0.0018    0.282     0.41      0.4231    0.7       0.5337    0.19      0.72       0.184
7.5      330     1.8     8.6     -2.9456    -0.704    0.109    1.78     0.9425    2.95     0       -0.3185    0.2405    -0.12    0        0.7       -0.19     -0.001     0          0          0         0.0004    -0.0018    0.1735    0.3015    0.4044    0.7       0.5337    0.19      0.72       0.184
10       330     1.8     8.6     -4.0143    -0.6      0.1      1.95     1.15      2.95     0       -0.209     0.27      -0.12    0        0.8       -0.3      -0.001     0          0          0         0.0004    -0.0018    0.064     0.192     0.38      0.7       0.5337    0.19      0.72       0.184
    """)
    #: equation constants (that are IMT independent)
    CONSTS = {
        # m1, m2 specified at section "Moderate-to-Large Magnitude Scaling"
        'm1': 6.75,
        'm2': 5.50,
        # h1, h2, h3 specified at section "Hanging Wall Effects"
        'h1': +0.25,
        'h2': +1.50,
        'h3': -0.75,
    } 
[docs]class GulerceEtAl2017RegTWN(GulerceEtAl2017):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    Regional corrections for Taiwan
    """
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        Compute regional term for Taiwan, see section "Regionalization and
        Aftershocks"
        """
        vs30star = self._get_vs30star(vs30, imt)
        return C['a31'] * np.log(vs30star/C['vlin']) + C['a25'] * rrup 
[docs]class GulerceEtAl2017RegITA(GulerceEtAl2017):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    Regional corrections for Italy
    """
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        Compute regional term for Italy, see section "Regionalization and
        Aftershocks"
        """
        # removed regional linear vs30 scaling term since a32=0
        return C['a26'] * rrup 
[docs]class GulerceEtAl2017RegMID(GulerceEtAl2017):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    Regional corrections for Middle East
    """
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        Compute regional term for Middle East, see section "Regionalization and
        Aftershocks"
        """
        return C['a27'] * rrup 
[docs]class GulerceEtAl2017RegCHN(GulerceEtAl2017):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    Regional corrections for China
    """
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        Compute regional term for China, see section "Regionalization and
        Aftershocks"
        """
        return C['a28'] * rrup 
[docs]class GulerceEtAl2017RegJPN(GulerceEtAl2017):
    """
    Implements the GKAS16 GMPE by Gulerce et al. (2017) for vertical-component
    ground motions from the PEER NGA-West2 Project.
    Regional corrections for Japan
    """
    def _get_regional_term(self, C, imt, vs30, rrup):
        """
        Compute regional term for Japan, see section "Regionalization and
        Aftershocks"
        """
        vs30star = self._get_vs30star(vs30, imt)
        return C['a35'] * np.log(vs30star/C['vlin']) + C['a29'] * rrup
    def _get_phi_regional(self, C, mag):
        """
        Returns regional intra-event standard deviation (Phi) for Japan
        """
        if mag < 4:
            phi_reg = C['s1']
        elif mag <= 6:
            phi_reg = C['s1'] + (C['s2_all'] - C['s1']) / 2. * (mag - 4.)
        else:
            phi_reg = C['s2_all']
        return phi_reg
    def _get_tau_regional(self, C, mag):
        """
        Returns regional inter-event standard deviation (Tau) for Japan
        """
        if mag < 5:
            tau_reg = C['s3']
        elif mag <= 7:
            tau_reg = C['s3'] + (C['s4_all'] - C['s3']) / 2. * (mag - 5.)
        else:
            tau_reg = C['s4_all']
        return tau_reg