Source code for openquake.commonlib.writers

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2010-2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

import os
import csv
import tempfile
import numpy  # this is needed by the doctests, don't remove it
import pandas
from openquake.baselib.node import scientificformat

FIVEDIGITS = '%.5E'


# recursive function used internally by build_header
def _build_header(dtype, root):
    header = []
    if dtype.fields is None:
        if not root:
            return []
        return [root + (str(dtype), dtype.shape)]
    for field in dtype.names:
        dt = dtype.fields[field][0]
        if dt.subdtype is None:  # nested
            header.extend(_build_header(dt, root + (field,)))
        else:
            numpytype = str(dt.subdtype[0])
            header.append(root + (field, numpytype, dt.shape))
    return header


[docs]def build_header(dtype): """ Convert a numpy nested dtype into a list of strings suitable as header of csv file. >>> imt_dt = numpy.dtype([('PGA', numpy.float32, 3), ... ('PGV', numpy.float32, 4)]) >>> build_header(imt_dt) ['PGA:3', 'PGV:4'] >>> gmf_dt = numpy.dtype([('A', imt_dt), ('B', imt_dt), ... ('idx', numpy.uint32)]) >>> build_header(gmf_dt) ['A~PGA:3', 'A~PGV:4', 'B~PGA:3', 'B~PGV:4', 'idx'] """ header = _build_header(dtype, ()) h = [] for col in header: name = '~'.join(col[:-2]) shape = col[-1] coldescr = name if shape: coldescr += ':' + ':'.join(map(str, shape)) h.append(coldescr) return h
[docs]def extract_from(data, fields): """ Extract data from numpy arrays with nested records. >>> imt_dt = numpy.dtype([('PGA', float, 3), ('PGV', float, 4)]) >>> a = numpy.array([([1, 2, 3], [4, 5, 6, 7])], imt_dt) >>> extract_from(a, ['PGA']) array([[1., 2., 3.]]) >>> gmf_dt = numpy.dtype([('A', imt_dt), ('B', imt_dt), ... ('idx', numpy.uint32)]) >>> b = numpy.array([(([1, 2, 3], [4, 5, 6, 7]), ... ([1, 2, 4], [3, 5, 6, 7]), 8)], gmf_dt) >>> extract_from(b, ['idx']) array([8], dtype=uint32) >>> extract_from(b, ['B', 'PGV']) array([[3., 5., 6., 7.]]) """ for f in fields: data = data[f] return data
def _header(fields, renamedict): if renamedict: fields = [renamedict.get(f, f) for f in fields] return fields
[docs]def write_csv(dest, data, sep=',', fmt='%.6E', header=(), comment=None, renamedict=None): """ :param dest: None, file, filename or io.StringIO instance :param data: array to save :param sep: separator to use (default comma) :param fmt: formatting string (default '%12.8E') :param header: optional list with the names of the columns to display :param comment: optional comment dictionary """ if comment is not None: comment = ', '.join('%s=%r' % item for item in comment.items()) close = True if dest is None: # write on a temporary file fd, dest = tempfile.mkstemp(suffix='.csv') os.close(fd) if hasattr(dest, 'write'): # file-like object in append mode # it must be closed by client code close = False elif not hasattr(dest, 'getvalue'): # assume dest is a filename dest = open(dest, 'w') w = csv.writer(dest, delimiter=sep) try: # see if data is a composite numpy array data.dtype.fields except AttributeError: # not a composite array autoheader = [] else: autoheader = build_header(data.dtype) nfields = len(autoheader) or len(header) or len(data[0]) if comment: w.writerow(['#'] + [''] * (nfields - 2) + [comment]) someheader = header or autoheader if header != 'no-header' and someheader: w.writerow(_header(someheader, renamedict)) def format(val): return scientificformat(val, fmt) if autoheader: all_fields = [col.split(':', 1)[0].split('~') for col in autoheader] for record in data: row = [] for fields in all_fields: val = extract_from(record, fields) if fields[0] in ('lon', 'lat', 'depth'): row.append('%.5f' % val) else: row.append(format(val)) w.writerow(_header(row, renamedict)) else: for row in data: w.writerow([format(col) for col in row]) if hasattr(dest, 'getvalue'): return elif close: dest.close() return dest.name
[docs]class CsvWriter(object): """ Class used in the exporters to save a bunch of CSV files """ def __init__(self, sep=',', fmt='%12.8E'): self.sep = sep self.fmt = fmt self.fnames = set()
[docs] def save(self, data, fname, header=(), comment=None, renamedict=None): """ Save data on fname. :param data: numpy array, list of lists or pandas DataFrame :param fname: path name :param header: header to use :param comment: optional dictionary to be converted in a comment :param renamedict: a dictionary for renaming the columns """ if isinstance(data, pandas.DataFrame): if comment is None: data.to_csv(fname, index=False, float_format=self.fmt, line_terminator='\r\n') else: write_csv(fname, [], self.sep, self.fmt, list(data.columns), comment=comment) data.to_csv(fname, index=False, float_format=self.fmt, line_terminator='\r\n', header=False, mode='a') else: write_csv(fname, data, self.sep, self.fmt, header, comment, renamedict) self.fnames.add(getattr(fname, 'name', fname))
[docs] def save_block(self, data, dest): """ Save data on dest, which is a file open in 'a' mode """ write_csv(dest, data, self.sep, self.fmt, 'no-header')
[docs] def getsaved(self): """ Returns the list of files saved by this CsvWriter """ return sorted(self.fnames)
[docs]def castable_to_int(s): """ Return True if the string `s` can be interpreted as an integer """ try: int(s) except ValueError: return False else: return True
[docs]def parse_header(header): """ Convert a list of the form `['fieldname:fieldtype:fieldsize',...]` into a numpy composite dtype. The parser understands headers generated by :func:`openquake.commonlib.writers.build_header`. Here is an example: >>> parse_header(['PGA:float32', 'PGV', 'avg:float32:2']) (['PGA', 'PGV', 'avg'], dtype([('PGA', '<f4'), ('PGV', '<f4'), ('avg', '<f4', (2,))])) :params header: a list of type descriptions :returns: column names and the corresponding composite dtype """ triples = [] fields = [] for col_str in header: col = col_str.strip().split(':') n = len(col) if n == 1: # default dtype and no shape col = [col[0], 'float32', ''] elif n == 2: if castable_to_int(col[1]): # default dtype and shape col = [col[0], 'float32', col[1]] else: # dtype and no shape col = [col[0], col[1], ''] elif n > 3: raise ValueError('Invalid column description: %s' % col_str) field = col[0] numpytype = col[1] shape = () if not col[2].strip() else (int(col[2]),) triples.append((field, numpytype, shape)) fields.append(field) return fields, numpy.dtype(triples)
if __name__ == '__main__': # pretty print of NRML files import sys import shutil from openquake.hazardlib import nrml nrmlfiles = sys.argv[1:] for fname in nrmlfiles: node = nrml.read(fname) shutil.copy(fname, fname + '.bak') with open(fname, 'w') as out: nrml.write(list(node), out)